
QEMU version 4.1.0

User Documentation

i

Table of Contents

1 Introduction . 1
1.1 Features . 1

2 QEMU PC System emulator 2
2.1 Introduction . 2
2.2 Quick Start . 2
2.3 Invocation . 3

2.3.1 Standard options . 3
2.3.2 Block device options . 12
2.3.3 USB options . 21
2.3.4 Display options . 22
2.3.5 i386 target only . 28
2.3.6 Network options . 29
2.3.7 Character device options . 37
2.3.8 Bluetooth(R) options . 41
2.3.9 TPM device options . 42
2.3.10 Linux/Multiboot boot specific . 43
2.3.11 Debug/Expert options . 43
2.3.12 Generic object creation . 52
2.3.13 Device URL Syntax . 63

2.4 Keys in the graphical frontends . 66
2.5 Keys in the character backend multiplexer . 67
2.6 QEMU Monitor . 67

2.6.1 Commands . 68
2.6.2 Integer expressions . 80

2.7 CPU models . 80
2.7.1 Recommendations for KVM CPU
model configuration on x86 hosts . 81
2.7.1.1 Preferred CPU models for Intel x86 hosts 81
2.7.1.2 Important CPU features for Intel x86 hosts 82
2.7.1.3 Preferred CPU models for AMD x86 hosts 83
2.7.1.4 Important CPU features for AMD x86 hosts 83
2.7.1.5 Default x86 CPU models . 84
2.7.1.6 Other non-recommended x86 CPUs 85

2.7.2 Supported CPU model configurations on MIPS hosts 85
2.7.2.1 Supported CPU models for MIPS32 hosts 85
2.7.2.2 Supported CPU models for MIPS64 hosts 86
2.7.2.3 Supported CPU models for nanoMIPS hosts 87
2.7.2.4 Preferred CPU models for MIPS hosts 87

2.7.3 Syntax for configuring CPU models . 87
2.7.3.1 QEMU command line . 87
2.7.3.2 Libvirt guest XML . 87

2.8 Disk Images . 88

ii

2.8.1 Quick start for disk image creation . 88
2.8.2 Snapshot mode . 88
2.8.3 VM snapshots . 88
2.8.4 qemu-img Invocation . 89
2.8.5 qemu-nbd Invocation . 100
2.8.6 Disk image file formats . 104

2.8.6.1 Read-only formats . 109
2.8.7 Using host drives . 109

2.8.7.1 Linux . 109
2.8.7.2 Windows . 110
2.8.7.3 Mac OS X . 110

2.8.8 Virtual FAT disk images . 110
2.8.9 NBD access . 110
2.8.10 Sheepdog disk images . 111
2.8.11 iSCSI LUNs . 112
2.8.12 GlusterFS disk images . 113
2.8.13 Secure Shell (ssh) disk images . 114
2.8.14 NVMe disk images . 115
2.8.15 Disk image file locking . 116

2.9 Network emulation . 116
2.9.1 Using TAP network interfaces . 116

2.9.1.1 Linux host . 117
2.9.1.2 Windows host . 117

2.9.2 Using the user mode network stack . 117
2.9.3 Hubs . 117
2.9.4 Connecting emulated networks between QEMU instances . . 118

2.10 Other Devices . 118
2.10.1 Inter-VM Shared Memory device . 118

2.10.1.1 Migration with ivshmem . 118
2.10.1.2 ivshmem and hugepages . 118

2.11 Direct Linux Boot . 119
2.12 USB emulation . 119

2.12.1 Connecting USB devices . 119
2.12.2 Using host USB devices on a Linux host 120

2.13 VNC security . 121
2.13.1 Without passwords . 121
2.13.2 With passwords . 121
2.13.3 With x509 certificates . 122
2.13.4 With x509 certificates and client verification 122
2.13.5 With x509 certificates, client verification and passwords . . 122
2.13.6 With SASL authentication . 123
2.13.7 With x509 certificates and SASL authentication 123
2.13.8 Configuring SASL mechanisms . 123

2.14 TLS setup for network services . 124
2.14.1 Setup the Certificate Authority . 124
2.14.2 Issuing server certificates . 125
2.14.3 Issuing client certificates . 126
2.14.4 TLS x509 credential configuration . 127

iii

2.14.5 TLS Pre-Shared Keys (PSK) . 128
2.15 GDB usage . 129
2.16 Target OS specific information . 130

2.16.1 Linux . 130
2.16.2 Windows . 130

2.16.2.1 SVGA graphic modes support . 130
2.16.2.2 CPU usage reduction . 130
2.16.2.3 Windows 2000 disk full problem 130
2.16.2.4 Windows 2000 shutdown . 131
2.16.2.5 Share a directory between Unix and Windows 131
2.16.2.6 Windows XP security problem . 131

2.16.3 MS-DOS and FreeDOS . 131
2.16.3.1 CPU usage reduction . 131

3 QEMU System emulator for non PC targets . . 132
3.1 PowerPC System emulator . 132
3.2 Sparc32 System emulator . 133
3.3 Sparc64 System emulator . 134
3.4 MIPS System emulator . 134

3.4.1 nanoMIPS System emulator . 136
3.5 ARM System emulator . 136
3.6 ColdFire System emulator . 139
3.7 Cris System emulator . 139
3.8 Microblaze System emulator . 139
3.9 SH4 System emulator . 139
3.10 Xtensa System emulator . 140

4 QEMU Guest Agent invocation 141

5 QEMU User space emulator 143
5.1 Supported Operating Systems . 143
5.2 Features . 143
5.3 Linux User space emulator . 143

5.3.1 Quick Start . 143
5.3.2 Wine launch . 144
5.3.3 Command line options . 144
5.3.4 Other binaries . 145

5.4 BSD User space emulator . 146
5.4.1 BSD Status . 146
5.4.2 Quick Start . 146
5.4.3 Command line options . 146

6 System requirements . 147
6.1 KVM kernel module . 147

iv

7 Security . 148
7.1 Overview . 148
7.2 Security Requirements . 148

7.2.1 Virtualization Use Case . 148
7.2.2 Non-virtualization Use Case . 148

7.3 Architecture . 148
7.3.1 Guest Isolation . 149
7.3.2 Principle of Least Privilege . 149
7.3.3 Isolation mechanisms . 149

7.4 Sensitive configurations . 150
7.4.1 Monitor console (QMP and HMP) . 150

Appendix A Implementation notes 151
A.1 CPU emulation . 151

A.1.1 x86 and x86-64 emulation . 151
A.1.2 ARM emulation . 151
A.1.3 MIPS emulation . 151
A.1.4 PowerPC emulation . 151
A.1.5 Sparc32 and Sparc64 emulation . 152
A.1.6 Xtensa emulation . 152

A.2 Managed start up options . 152

Appendix B Deprecated features 154
B.1 System emulator command line arguments 154

B.1.1 -machine enforce-config-section=on|off (since 3.1) 154
B.1.2 -no-kvm (since 1.3.0) . 154
B.1.3 -usbdevice (since 2.10.0) . 154
B.1.4 -drive file=json:{...{’driver’:’file’}} (since 3.0) 154
B.1.5 -net ...,name=name (since 3.1) . 154
B.1.6 -smp (invalid topologies) (since 3.1) . 154
B.1.7 -vnc acl (since 4.0.0) . 155
B.1.8 QEMU AUDIO environment
variables and -audio-help (since 4.0) . 155

B.1.9 -mon ...,control=readline,pretty=on|off (since 4.1) 155
B.1.10 -realtime (since 4.1) . 155
B.1.11 -virtfs synth (since 4.1) . 155
B.1.12 -numa node,mem=size (since 4.1) . 155
B.1.13 -numa node (without memory specified) (since 4.1) 155
B.1.14 -mem-path fallback to RAM (since 4.1) 155
B.1.15 RISC-V -bios (since 4.1) . 156

B.2 QEMU Machine Protocol (QMP) commands 156
B.2.1 block-dirty-bitmap-add "autoload" parameter (since 2.12.0) . . 156
B.2.2 query-block result field dirty-bitmaps[i].status (since 4.0) . . 156
B.2.3 query-cpus (since 2.12.0) . 156
B.2.4 query-cpus-fast "arch" output member (since 3.0.0) 156
B.2.5 cpu-add (since 4.0) . 156
B.2.6 query-events (since 4.0) . 156

v

B.2.7 chardev client socket with ’wait’ option (since 4.0) 156
B.3 Human Monitor Protocol (HMP) commands 157

B.3.1 The hub id parameter of ’hostfwd add’
/ ’hostfwd remove’ (since 3.1) . 157

B.3.2 cpu-add (since 4.0) . 157
B.3.3 acl show, acl reset, acl policy,
acl add, acl remove (since 4.0.0) . 157

B.4 Guest Emulator ISAs . 157
B.4.1 RISC-V ISA privledge
specification version 1.09.1 (since 4.1) . 157

B.5 System emulator CPUS . 157
B.5.1 RISC-V ISA CPUs (since 4.1) . 157
B.5.2 RISC-V ISA CPUs (since 4.1) . 157

B.6 System emulator devices . 157
B.6.1 bluetooth (since 3.1) . 157

B.7 System emulator machines . 158
B.7.1 pc-0.12, pc-0.13, pc-0.14 and pc-0.15 (since 4.0) 158
B.7.2 prep (PowerPC) (since 3.1) . 158
B.7.3 spike v1.9.1 and spike v1.10 (since 4.1) 158

B.8 Device options . 158
B.8.1 Block device options . 158

B.8.1.1 "backing": "" (since 2.12.0) . 158
B.8.1.2 rbd keyvalue pair encoded filenames: "" (since 3.1.0) . . 158

B.9 Related binaries . 158
B.9.1 qemu-nbd –partition (since 4.0.0) . 158

B.10 Build system . 159
B.10.1 Python 2 support (since 4.1.0) . 159

B.11 Backwards compatibility . 159
B.11.1 Runnability guarantee of CPU models (since 4.1.0) 159

Appendix C Supported build platforms 160
C.1 Linux OS . 160
C.2 Windows . 160
C.3 macOS . 160
C.4 FreeBSD . 160
C.5 NetBSD . 161
C.6 OpenBSD . 161

Appendix D License . 162

Appendix E Index . 163
E.1 Concept Index . 163
E.2 Function Index . 163
E.3 Keystroke Index . 166
E.4 Program Index . 167
E.5 Data Type Index . 167
E.6 Variable Index . 167

1

1 Introduction

1.1 Features

QEMU is a FAST! processor emulator using dynamic translation to achieve good emulation
speed.

QEMU has two operating modes:

• Full system emulation. In this mode, QEMU emulates a full system (for example a PC),
including one or several processors and various peripherals. It can be used to launch
different Operating Systems without rebooting the PC or to debug system code.

• User mode emulation. In this mode, QEMU can launch processes compiled for one
CPU on another CPU. It can be used to launch the Wine Windows API emulator
(https://www.winehq.org) or to ease cross-compilation and cross-debugging.

QEMU has the following features:

• QEMU can run without a host kernel driver and yet gives acceptable performance. It
uses dynamic translation to native code for reasonable speed, with support for self-
modifying code and precise exceptions.

• It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X, Windows)
and architectures.

• It performs accurate software emulation of the FPU.

QEMU user mode emulation has the following features:

• Generic Linux system call converter, including most ioctls.

• clone() emulation using native CPU clone() to use Linux scheduler for threads.

• Accurate signal handling by remapping host signals to target signals.

QEMU full system emulation has the following features:

• QEMU uses a full software MMU for maximum portability.

• QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators execute
most of the guest code natively, while continuing to emulate the rest of the machine.

• Various hardware devices can be emulated and in some cases, host devices (e.g. serial
and parallel ports, USB, drives) can be used transparently by the guest Operating Sys-
tem. Host device passthrough can be used for talking to external physical peripherals
(e.g. a webcam, modem or tape drive).

• Symmetric multiprocessing (SMP) support. Currently, an in-kernel accelerator is re-
quired to use more than one host CPU for emulation.

https://www.winehq.org

2

2 QEMU PC System emulator

2.1 Introduction

The QEMU PC System emulator simulates the following peripherals:

− i440FX host PCI bridge and PIIX3 PCI to ISA bridge

− Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA extensions
(hardware level, including all non standard modes).

− PS/2 mouse and keyboard

− 2 PCI IDE interfaces with hard disk and CD-ROM support

− Floppy disk

− PCI and ISA network adapters

− Serial ports

− IPMI BMC, either and internal or external one

− Creative SoundBlaster 16 sound card

− ENSONIQ AudioPCI ES1370 sound card

− Intel 82801AA AC97 Audio compatible sound card

− Intel HD Audio Controller and HDA codec

− Adlib (OPL2) - Yamaha YM3812 compatible chip

− Gravis Ultrasound GF1 sound card

− CS4231A compatible sound card

− PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.

SMP is supported with up to 255 CPUs.

QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL VGA
BIOS.

QEMU uses YM3812 emulation by Tatsuyuki Satoh.

QEMU uses GUS emulation (GUSEMU32 http://www.deinmeister.de/gusemu/) by
Tibor "TS" Schütz.

Note that, by default, GUS shares IRQ(7) with parallel ports and so QEMU must be told
to not have parallel ports to have working GUS.

qemu-system-i386 dos.img -soundhw gus -parallel none

Alternatively:

qemu-system-i386 dos.img -device gus,irq=5

Or some other unclaimed IRQ.

CS4231A is the chip used in Windows Sound System and GUSMAX products

2.2 Quick Start

Download and uncompress the linux image (linux.img) and type:

qemu-system-i386 linux.img

Linux should boot and give you a prompt.

http://www.deinmeister.de/gusemu/

Chapter 2: QEMU PC System emulator 3

2.3 Invocation

qemu-system-i386 [options] [disk_image]

disk image is a raw hard disk image for IDE hard disk 0. Some targets do not need a disk
image.

2.3.1 Standard options

-h Display help and exit

-version Display version information and exit

-machine [type=]name[,prop=value[,...]]

Select the emulated machine by name. Use -machine help to list available
machines.

For architectures which aim to support live migration compatibility across re-
leases, each release will introduce a new versioned machine type. For example,
the 2.8.0 release introduced machine types “pc-i440fx-2.8” and “pc-q35-2.8” for
the x86 64/i686 architectures.

To allow live migration of guests from QEMU version 2.8.0, to QEMU version
2.9.0, the 2.9.0 version must support the “pc-i440fx-2.8” and “pc-q35-2.8” ma-
chines too. To allow users live migrating VMs to skip multiple intermediate
releases when upgrading, new releases of QEMU will support machine types
from many previous versions.

Supported machine properties are:

accel=accels1[:accels2[:...]]

This is used to enable an accelerator. Depending on the target
architecture, kvm, xen, hax, hvf, whpx or tcg can be available. By
default, tcg is used. If there is more than one accelerator specified,
the next one is used if the previous one fails to initialize.

kernel_irqchip=on|off

Controls in-kernel irqchip support for the chosen accelerator when
available.

gfx_passthru=on|off

Enables IGD GFX passthrough support for the chosen machine
when available.

vmport=on|off|auto

Enables emulation of VMWare IO port, for vmmouse etc. auto says
to select the value based on accel. For accel=xen the default is off
otherwise the default is on.

kvm_shadow_mem=size

Defines the size of the KVM shadow MMU.

dump-guest-core=on|off

Include guest memory in a core dump. The default is on.

Chapter 2: QEMU PC System emulator 4

mem-merge=on|off

Enables or disables memory merge support. This feature, when
supported by the host, de-duplicates identical memory pages among
VMs instances (enabled by default).

aes-key-wrap=on|off

Enables or disables AES key wrapping support on s390-ccw hosts.
This feature controls whether AES wrapping keys will be created
to allow execution of AES cryptographic functions. The default is
on.

dea-key-wrap=on|off

Enables or disables DEA key wrapping support on s390-ccw hosts.
This feature controls whether DEA wrapping keys will be created
to allow execution of DEA cryptographic functions. The default is
on.

nvdimm=on|off

Enables or disables NVDIMM support. The default is off.

enforce-config-section=on|off

If enforce-config-section is set to on, force migration
code to send configuration section even if the machine-type
sets the migration.send-configuration property to off.
NOTE: this parameter is deprecated. Please use -global

migration.send-configuration=on|off instead.

memory-encryption=

Memory encryption object to use. The default is none.

-cpu model

Select CPU model (-cpu help for list and additional feature selection)

-accel name[,prop=value[,...]]

This is used to enable an accelerator. Depending on the target architecture,
kvm, xen, hax, hvf, whpx or tcg can be available. By default, tcg is used. If
there is more than one accelerator specified, the next one is used if the previous
one fails to initialize.

thread=single|multi

Controls number of TCG threads. When the TCG is multi-
threaded there will be one thread per vCPU therefor taking
advantage of additional host cores. The default is to enable
multi-threading where both the back-end and front-ends support
it and no incompatible TCG features have been enabled (e.g.
icount/replay).

-smp

[cpus=]n[,cores=cores][,threads=threads][,dies=dies][,sockets=sockets][,maxcpus=maxcpus]

Simulate an SMP system with n CPUs. On the PC target, up to 255 CPUs
are supported. On Sparc32 target, Linux limits the number of usable CPUs to
4. For the PC target, the number of cores per die, the number of threads per

Chapter 2: QEMU PC System emulator 5

cores, the number of dies per packages and the total number of sockets can be
specified. Missing values will be computed. If any on the three values is given,
the total number of CPUs n can be omitted. maxcpus specifies the maximum
number of hotpluggable CPUs.

-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node]

-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node]

-numa dist,src=source,dst=destination,val=distance

-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]

Define a NUMA node and assign RAM and VCPUs to it. Set the NUMA
distance from a source node to a destination node.

Legacy VCPU assignment uses ‘cpus’ option where firstcpu and lastcpu are
CPU indexes. Each ‘cpus’ option represent a contiguous range of CPU indexes
(or a single VCPU if lastcpu is omitted). A non-contiguous set of VCPUs can
be represented by providing multiple ‘cpus’ options. If ‘cpus’ is omitted on all
nodes, VCPUs are automatically split between them.

For example, the following option assigns VCPUs 0, 1, 2 and 5 to a NUMA
node:

-numa node,cpus=0-2,cpus=5

‘cpu’ option is a new alternative to ‘cpus’ option which uses
‘socket-id|core-id|thread-id’ properties to assign CPU objects to
a node using topology layout properties of CPU. The set of properties is
machine specific, and depends on used machine type/‘smp’ options. It could
be queried with ‘hotpluggable-cpus’ monitor command. ‘node-id’ property
specifies node to which CPU object will be assigned, it’s required for node to
be declared with ‘node’ option before it’s used with ‘cpu’ option.

For example:

-M pc \

-smp 1,sockets=2,maxcpus=2 \

-numa node,nodeid=0 -numa node,nodeid=1 \

-numa cpu,node-id=0,socket-id=0 -numa cpu,node-id=1,socket-id=1

‘mem’ assigns a given RAM amount to a node. ‘memdev’ assigns RAM from a
given memory backend device to a node. If ‘mem’ and ‘memdev’ are omitted in
all nodes, RAM is split equally between them.

‘mem’ and ‘memdev’ are mutually exclusive. Furthermore, if one node uses
‘memdev’, all of them have to use it.

source and destination are NUMA node IDs. distance is the NUMA distance
from source to destination. The distance from a node to itself is always 10. If
any pair of nodes is given a distance, then all pairs must be given distances.
Although, when distances are only given in one direction for each pair of nodes,
then the distances in the opposite directions are assumed to be the same. If,
however, an asymmetrical pair of distances is given for even one node pair, then
all node pairs must be provided distance values for both directions, even when
they are symmetrical. When a node is unreachable from another node, set the
pair’s distance to 255.

Chapter 2: QEMU PC System emulator 6

Note that the -numa option doesn’t allocate any of the specified resources, it
just assigns existing resources to NUMA nodes. This means that one still has
to use the -m, -smp options to allocate RAM and VCPUs respectively.

-add-fd fd=fd,set=set[,opaque=opaque]

Add a file descriptor to an fd set. Valid options are:

fd=fd This option defines the file descriptor of which a duplicate is added
to fd set. The file descriptor cannot be stdin, stdout, or stderr.

set=set This option defines the ID of the fd set to add the file descriptor
to.

opaque=opaque

This option defines a free-form string that can be used to describe
fd.

You can open an image using pre-opened file descriptors from an fd set:

qemu-system-i386

-add-fd fd=3,set=2,opaque="rdwr:/path/to/file"

-add-fd fd=4,set=2,opaque="rdonly:/path/to/file"

-drive file=/dev/fdset/2,index=0,media=disk

-set group.id.arg=value

Set parameter arg for item id of type group

-global driver.prop=value

-global driver=driver,property=property,value=value

Set default value of driver’s property prop to value, e.g.:

qemu-system-i386 -global ide-hd.physical_block_size=4096 disk-image.img

In particular, you can use this to set driver properties for devices which are
created automatically by the machine model. To create a device which is not
created automatically and set properties on it, use -device.

-global driver.prop=value is shorthand for -global driver=driver,property=prop,value=value.
The longhand syntax works even when driver contains a dot.

-boot [order=drives][,once=drives][,menu=on|off][,splash=sp_name][,splash-

time=sp_time][,reboot-timeout=rb_timeout][,strict=on|off]

Specify boot order drives as a string of drive letters. Valid drive letters depend
on the target architecture. The x86 PC uses: a, b (floppy 1 and 2), c (first
hard disk), d (first CD-ROM), n-p (Etherboot from network adapter 1-4), hard
disk boot is the default. To apply a particular boot order only on the first
startup, specify it via once. Note that the order or once parameter should not
be used together with the bootindex property of devices, since the firmware
implementations normally do not support both at the same time.

Interactive boot menus/prompts can be enabled via menu=on as far as
firmware/BIOS supports them. The default is non-interactive boot.

A splash picture could be passed to bios, enabling user to show it as logo,
when option splash=sp name is given and menu=on, If firmware/BIOS sup-
ports them. Currently Seabios for X86 system support it. limitation: The

Chapter 2: QEMU PC System emulator 7

splash file could be a jpeg file or a BMP file in 24 BPP format(true color).
The resolution should be supported by the SVGA mode, so the recommended
is 320x240, 640x480, 800x640.

A timeout could be passed to bios, guest will pause for rb timeout ms when
boot failed, then reboot. If rb timeout is ’-1’, guest will not reboot, qemu passes
’-1’ to bios by default. Currently Seabios for X86 system support it.

Do strict boot via strict=on as far as firmware/BIOS supports it. This only
effects when boot priority is changed by bootindex options. The default is
non-strict boot.

try to boot from network first, then from hard disk

qemu-system-i386 -boot order=nc

boot from CD-ROM first, switch back to default order after reboot

qemu-system-i386 -boot once=d

boot with a splash picture for 5 seconds.

qemu-system-i386 -boot menu=on,splash=/root/boot.bmp,splash-time=5000

Note: The legacy format ’-boot drives’ is still supported but its use is discour-
aged as it may be removed from future versions.

-m [size=]megs[,slots=n,maxmem=size]

Sets guest startup RAM size to megs megabytes. Default is 128 MiB. Op-
tionally, a suffix of “M” or “G” can be used to signify a value in megabytes
or gigabytes respectively. Optional pair slots, maxmem could be used to set
amount of hotpluggable memory slots and maximum amount of memory. Note
that maxmem must be aligned to the page size.

For example, the following command-line sets the guest startup RAM size to
1GB, creates 3 slots to hotplug additional memory and sets the maximum
memory the guest can reach to 4GB:

qemu-system-x86_64 -m 1G,slots=3,maxmem=4G

If slots and maxmem are not specified, memory hotplug won’t be enabled and
the guest startup RAM will never increase.

-mem-path path

Allocate guest RAM from a temporarily created file in path.

-mem-prealloc

Preallocate memory when using -mem-path.

-k language

Use keyboard layout language (for example fr for French). This option is only
needed where it is not easy to get raw PC keycodes (e.g. on Macs, with some
X11 servers or with a VNC or curses display). You don’t normally need to use
it on PC/Linux or PC/Windows hosts.

The available layouts are:

ar de-ch es fo fr-ca hu ja mk no pt-br sv

da en-gb et fr fr-ch is lt nl pl ru th

de en-us fi fr-be hr it lv nl-be pt sl tr

The default is en-us.

Chapter 2: QEMU PC System emulator 8

-audio-help

Will show the -audiodev equivalent of the currently specified (deprecated) en-
vironment variables.

-audiodev [driver=]driver,id=id[,prop[=value][,...]]

Adds a new audio backend driver identified by id. There are global and driver
specific properties. Some values can be set differently for input and output,
they’re marked with in|out.. You can set the input’s property with in.prop

and the output’s property with out.prop. For example:

-audiodev alsa,id=example,in.frequency=44110,out.frequency=8000

-audiodev alsa,id=example,out.channels=1 # leaves in.channels unspecified

Valid global options are:

id=identifier

Identifies the audio backend.

timer-period=period

Sets the timer period used by the audio subsystem in microseconds.
Default is 10000 (10 ms).

in|out.fixed-settings=on|off

Use fixed settings for host audio. When off, it will change based
on how the guest opens the sound card. In this case you must not
specify frequency, channels or format. Default is on.

in|out.frequency=frequency

Specify the frequency to use when using fixed-settings. Default is
44100Hz.

in|out.channels=channels

Specify the number of channels to use when using fixed-settings.
Default is 2 (stereo).

in|out.format=format

Specify the sample format to use when using fixed-settings. Valid
values are: s8, s16, s32, u8, u16, u32. Default is s16.

in|out.voices=voices

Specify the number of voices to use. Default is 1.

in|out.buffer=usecs

Sets the size of the buffer in microseconds.

-audiodev none,id=id[,prop[=value][,...]]

Creates a dummy backend that discards all outputs. This backend has no
backend specific properties.

-audiodev alsa,id=id[,prop[=value][,...]]

Creates backend using the ALSA. This backend is only available on Linux.

ALSA specific options are:

in|out.dev=device

Specify the ALSA device to use for input and/or output. Default
is default.

Chapter 2: QEMU PC System emulator 9

in|out.period-len=usecs

Sets the period length in microseconds.

in|out.try-poll=on|off

Attempt to use poll mode with the device. Default is on.

threshold=threshold

Threshold (in microseconds) when playback starts. Default is 0.

-audiodev coreaudio,id=id[,prop[=value][,...]]

Creates a backend using Apple’s Core Audio. This backend is only available on
Mac OS and only supports playback.

Core Audio specific options are:

in|out.buffer-count=count

Sets the count of the buffers.

-audiodev dsound,id=id[,prop[=value][,...]]

Creates a backend using Microsoft’s DirectSound. This backend is only available
on Windows and only supports playback.

DirectSound specific options are:

latency=usecs

Add extra usecs microseconds latency to playback. Default is 10000
(10 ms).

-audiodev oss,id=id[,prop[=value][,...]]

Creates a backend using OSS. This backend is available on most Unix-like sys-
tems.

OSS specific options are:

in|out.dev=device

Specify the file name of the OSS device to use. Default is /dev/dsp.

in|out.buffer-count=count

Sets the count of the buffers.

in|out.try-poll=on|of

Attempt to use poll mode with the device. Default is on.

try-mmap=on|off

Try using memory mapped device access. Default is off.

exclusive=on|off

Open the device in exclusive mode (vmix won’t work in this case).
Default is off.

dsp-policy=policy

Sets the timing policy (between 0 and 10, where smaller number
means smaller latency but higher CPU usage). Use -1 to use buffer
sizes specified by buffer and buffer-count. This option is ignored
if you do not have OSS 4. Default is 5.

Chapter 2: QEMU PC System emulator 10

-audiodev pa,id=id[,prop[=value][,...]]

Creates a backend using PulseAudio. This backend is available on most systems.

PulseAudio specific options are:

server=server

Sets the PulseAudio server to connect to.

in|out.name=sink

Use the specified source/sink for recording/playback.

-audiodev sdl,id=id[,prop[=value][,...]]

Creates a backend using SDL. This backend is available on most systems, but
you should use your platform’s native backend if possible. This backend has no
backend specific properties.

-audiodev spice,id=id[,prop[=value][,...]]

Creates a backend that sends audio through SPICE. This backend requires
-spice and automatically selected in that case, so usually you can ignore this
option. This backend has no backend specific properties.

-audiodev wav,id=id[,prop[=value][,...]]

Creates a backend that writes audio to a WAV file.

Backend specific options are:

path=path

Write recorded audio into the specified file. Default is qemu.wav.

-soundhw card1[,card2,...] or -soundhw all

Enable audio and selected sound hardware. Use ’help’ to print all available
sound hardware.

qemu-system-i386 -soundhw sb16,adlib disk.img

qemu-system-i386 -soundhw es1370 disk.img

qemu-system-i386 -soundhw ac97 disk.img

qemu-system-i386 -soundhw hda disk.img

qemu-system-i386 -soundhw all disk.img

qemu-system-i386 -soundhw help

Note that Linux’s i810 audio OSS kernel (for AC97) module might require
manually specifying clocking.

modprobe i810_audio clocking=48000

-device driver[,prop[=value][,...]]

Add device driver. prop=value sets driver properties. Valid properties depend
on the driver. To get help on possible drivers and properties, use -device help

and -device driver,help.

Some drivers are:

-device ipmi-bmc-sim,id=id[,slave_

addr=val][,sdrfile=file][,furareasize=val][,furdatafile=file]

Add an IPMI BMC. This is a simulation of a hardware management interface
processor that normally sits on a system. It provides a watchdog and the ability

Chapter 2: QEMU PC System emulator 11

to reset and power control the system. You need to connect this to an IPMI
interface to make it useful

The IPMI slave address to use for the BMC. The default is 0x20. This address
is the BMC’s address on the I2C network of management controllers. If you
don’t know what this means, it is safe to ignore it.

bmc=id The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern
above.

slave_addr=val

Define slave address to use for the BMC. The default is 0x20.

sdrfile=file

file containing raw Sensor Data Records (SDR) data. The default
is none.

fruareasize=val

size of a Field Replaceable Unit (FRU) area. The default is 1024.

frudatafile=file

file containing raw Field Replaceable Unit (FRU) inventory data.
The default is none.

-device ipmi-bmc-extern,id=id,chardev=id[,slave_addr=val]

Add a connection to an external IPMI BMC simulator. Instead of locally
emulating the BMC like the above item, instead connect to an external entity
that provides the IPMI services.

A connection is made to an external BMC simulator. If you do this, it is strongly
recommended that you use the "reconnect=" chardev option to reconnect to
the simulator if the connection is lost. Note that if this is not used carefully,
it can be a security issue, as the interface has the ability to send resets, NMIs,
and power off the VM. It’s best if QEMU makes a connection to an external
simulator running on a secure port on localhost, so neither the simulator nor
QEMU is exposed to any outside network.

See the "lanserv/README.vm" file in the OpenIPMI library for more details
on the external interface.

-device isa-ipmi-kcs,bmc=id[,ioport=val][,irq=val]

Add a KCS IPMI interafce on the ISA bus. This also adds a corresponding
ACPI and SMBIOS entries, if appropriate.

bmc=id The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern
above.

ioport=val

Define the I/O address of the interface. The default is 0xca0 for
KCS.

irq=val Define the interrupt to use. The default is 5. To disable interrupts,
set this to 0.

-device isa-ipmi-bt,bmc=id[,ioport=val][,irq=val]

Like the KCS interface, but defines a BT interface. The default port is 0xe4
and the default interrupt is 5.

Chapter 2: QEMU PC System emulator 12

-name name

Sets the name of the guest. This name will be displayed in the SDL window
caption. The name will also be used for the VNC server. Also optionally set
the top visible process name in Linux. Naming of individual threads can also
be enabled on Linux to aid debugging.

-uuid uuid

Set system UUID.

2.3.2 Block device options

-fda file

-fdb file Use file as floppy disk 0/1 image (see Section 2.8 [disk images], page 88).

-hda file

-hdb file

-hdc file

-hdd file Use file as hard disk 0, 1, 2 or 3 image (see Section 2.8 [disk images], page 88).

-cdrom file

Use file as CD-ROM image (you cannot use -hdc and -cdrom at the same
time). You can use the host CD-ROM by using /dev/cdrom as filename (see
Section 2.8.7 [host drives], page 109).

-blockdev option[,option[,option[,...]]]

Define a new block driver node. Some of the options apply to all block drivers,
other options are only accepted for a specific block driver. See below for a list
of generic options and options for the most common block drivers.

Options that expect a reference to another node (e.g. file) can be given in two
ways. Either you specify the node name of an already existing node (file=node-
name), or you define a new node inline, adding options for the referenced node
after a dot (file.filename=path,file.aio=native).

A block driver node created with -blockdev can be used for a guest device by
specifying its node name for the drive property in a -device argument that
defines a block device.

Valid options for any block driver node:

driver Specifies the block driver to use for the given node.

node-name

This defines the name of the block driver node by which
it will be referenced later. The name must be unique,
i.e. it must not match the name of a different block
driver node, or (if you use -drive as well) the ID of a
drive.

If no node name is specified, it is automatically gener-
ated. The generated node name is not intended to be
predictable and changes between QEMU invocations.
For the top level, an explicit node name must be spec-
ified.

Chapter 2: QEMU PC System emulator 13

read-only

Open the node read-only. Guest write attempts will
fail.

cache.direct

The host page cache can be avoided with
cache.direct=on. This will attempt to do disk IO
directly to the guest’s memory. QEMU may still
perform an internal copy of the data.

cache.no-flush

In case you don’t care about data integrity over host
failures, you can use cache.no-flush=on. This option
tells QEMU that it never needs to write any data to the
disk but can instead keep things in cache. If anything
goes wrong, like your host losing power, the disk stor-
age getting disconnected accidentally, etc. your image
will most probably be rendered unusable.

discard=discard

discard is one of "ignore" (or "off") or "unmap" (or
"on") and controls whether discard (also known as
trim or unmap) requests are ignored or passed to the
filesystem. Some machine types may not support dis-
card requests.

detect-zeroes=detect-zeroes

detect-zeroes is "off", "on" or "unmap" and enables
the automatic conversion of plain zero writes by the
OS to driver specific optimized zero write commands.
You may even choose "unmap" if discard is set to "un-
map" to allow a zero write to be converted to an unmap

operation.

Driver-specific options for file

This is the protocol-level block driver for accessing regular files.

filename The path to the image file in the local filesystem

aio Specifies the AIO backend (threads/native, default:
threads)

locking Specifies whether the image file is protected with Linux
OFD / POSIX locks. The default is to use the Linux
Open File Descriptor API if available, otherwise no lock
is applied. (auto/on/off, default: auto)

Example:

-blockdev driver=file,node-name=disk,filename=disk.img

Driver-specific options for raw

This is the image format block driver for raw images. It is usually
stacked on top of a protocol level block driver such as file.

Chapter 2: QEMU PC System emulator 14

file Reference to or definition of the data source block
driver node (e.g. a file driver node)

Example 1:

-blockdev driver=file,node-name=disk_file,filename=disk.img

-blockdev driver=raw,node-name=disk,file=disk_file

Example 2:

-blockdev driver=raw,node-name=disk,file.driver=file,file.filename=disk.img

Driver-specific options for qcow2

This is the image format block driver for qcow2 images. It is usually
stacked on top of a protocol level block driver such as file.

file Reference to or definition of the data source block
driver node (e.g. a file driver node)

backing Reference to or definition of the backing file block de-
vice (default is taken from the image file). It is allowed
to pass null here in order to disable the default backing
file.

lazy-refcounts

Whether to enable the lazy refcounts feature (on/off;
default is taken from the image file)

cache-size

The maximum total size of the L2 table and refcount
block caches in bytes (default: the sum of l2-cache-size
and refcount-cache-size)

l2-cache-size

The maximum size of the L2 table cache in bytes (de-
fault: if cache-size is not specified - 32M on Linux plat-
forms, and 8M on non-Linux platforms; otherwise, as
large as possible within the cache-size, while permitting
the requested or the minimal refcount cache size)

refcount-cache-size

The maximum size of the refcount block cache in bytes
(default: 4 times the cluster size; or if cache-size is
specified, the part of it which is not used for the L2
cache)

cache-clean-interval

Clean unused entries in the L2 and refcount caches.
The interval is in seconds. The default value is 600 on
supporting platforms, and 0 on other platforms. Set-
ting it to 0 disables this feature.

pass-discard-request

Whether discard requests to the qcow2 device should
be forwarded to the data source (on/off; default: on if
discard=unmap is specified, off otherwise)

Chapter 2: QEMU PC System emulator 15

pass-discard-snapshot

Whether discard requests for the data source should
be issued when a snapshot operation (e.g. deleting a
snapshot) frees clusters in the qcow2 file (on/off; de-
fault: on)

pass-discard-other

Whether discard requests for the data source should
be issued on other occasions where a cluster gets freed
(on/off; default: off)

overlap-check

Which overlap checks to perform for writes to the im-
age (none/constant/cached/all; default: cached). For
details or finer granularity control refer to the QAPI
documentation of blockdev-add.

Example 1:

-blockdev driver=file,node-name=my_file,filename=/tmp/disk.qcow2

-blockdev driver=qcow2,node-name=hda,file=my_file,overlap-check=none,cache-size=16777216

Example 2:

-blockdev driver=qcow2,node-name=disk,file.driver=http,file.filename=http://example.com/image.qcow2

Driver-specific options for other drivers

Please refer to the QAPI documentation of the blockdev-add QMP
command.

-drive option[,option[,option[,...]]]

Define a new drive. This includes creating a block driver node (the backend) as
well as a guest device, and is mostly a shortcut for defining the corresponding
-blockdev and -device options.

-drive accepts all options that are accepted by -blockdev. In addition, it
knows the following options:

file=file

This option defines which disk image (see Section 2.8 [disk images],
page 88) to use with this drive. If the filename contains comma, you
must double it (for instance, "file=my,,file" to use file "my,file").

Special files such as iSCSI devices can be specified using protocol
specific URLs. See the section for "Device URL Syntax" for more
information.

if=interface

This option defines on which type on interface the drive is con-
nected. Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio,
none.

bus=bus,unit=unit

These options define where is connected the drive by defining the
bus number and the unit id.

Chapter 2: QEMU PC System emulator 16

index=index

This option defines where is connected the drive by using an index
in the list of available connectors of a given interface type.

media=media

This option defines the type of the media: disk or cdrom.

snapshot=snapshot

snapshot is "on" or "off" and controls snapshot mode for the given
drive (see -snapshot).

cache=cache

cache is "none", "writeback", "unsafe", "directsync" or
"writethrough" and controls how the host cache is used to access
block data. This is a shortcut that sets the cache.direct and
cache.no-flush options (as in -blockdev), and additionally
cache.writeback, which provides a default for the write-cache

option of block guest devices (as in -device). The modes
correspond to the following settings:

cache.writeback cache.direct cache.no-flush

writeback on off off

none on on off

writethrough off off off

directsync off on off

unsafe on off on

The default mode is cache=writeback.

aio=aio aio is "threads", or "native" and selects between pthread based
disk I/O and native Linux AIO.

format=format

Specify which disk format will be used rather than detecting the
format. Can be used to specify format=raw to avoid interpreting
an untrusted format header.

werror=action,rerror=action

Specify which action to take on write and read errors. Valid actions
are: "ignore" (ignore the error and try to continue), "stop" (pause
QEMU), "report" (report the error to the guest), "enospc" (pause
QEMU only if the host disk is full; report the error to the guest oth-
erwise). The default setting is werror=enospc and rerror=report.

copy-on-read=copy-on-read

copy-on-read is "on" or "off" and enables whether to copy read
backing file sectors into the image file.

bps=b,bps_rd=r,bps_wr=w

Specify bandwidth throttling limits in bytes per second, either for
all request types or for reads or writes only. Small values can lead
to timeouts or hangs inside the guest. A safe minimum for disks is
2 MB/s.

Chapter 2: QEMU PC System emulator 17

bps_max=bm,bps_rd_max=rm,bps_wr_max=wm

Specify bursts in bytes per second, either for all request types or
for reads or writes only. Bursts allow the guest I/O to spike above
the limit temporarily.

iops=i,iops_rd=r,iops_wr=w

Specify request rate limits in requests per second, either for all
request types or for reads or writes only.

iops_max=bm,iops_rd_max=rm,iops_wr_max=wm

Specify bursts in requests per second, either for all request types or
for reads or writes only. Bursts allow the guest I/O to spike above
the limit temporarily.

iops_size=is

Let every is bytes of a request count as a new request for iops
throttling purposes. Use this option to prevent guests from cir-
cumventing iops limits by sending fewer but larger requests.

group=g Join a throttling quota group with given name g. All drives that
are members of the same group are accounted for together. Use
this option to prevent guests from circumventing throttling limits
by using many small disks instead of a single larger disk.

By default, the cache.writeback=on mode is used. It will report data writes
as completed as soon as the data is present in the host page cache. This is safe
as long as your guest OS makes sure to correctly flush disk caches where needed.
If your guest OS does not handle volatile disk write caches correctly and your
host crashes or loses power, then the guest may experience data corruption.

For such guests, you should consider using cache.writeback=off. This means
that the host page cache will be used to read and write data, but write notifi-
cation will be sent to the guest only after QEMU has made sure to flush each
write to the disk. Be aware that this has a major impact on performance.

When using the -snapshot option, unsafe caching is always used.

Copy-on-read avoids accessing the same backing file sectors repeatedly and is
useful when the backing file is over a slow network. By default copy-on-read is
off.

Instead of -cdrom you can use:

qemu-system-i386 -drive file=file,index=2,media=cdrom

Instead of -hda, -hdb, -hdc, -hdd, you can use:

qemu-system-i386 -drive file=file,index=0,media=disk

qemu-system-i386 -drive file=file,index=1,media=disk

qemu-system-i386 -drive file=file,index=2,media=disk

qemu-system-i386 -drive file=file,index=3,media=disk

You can open an image using pre-opened file descriptors from an fd set:

qemu-system-i386

-add-fd fd=3,set=2,opaque="rdwr:/path/to/file"

-add-fd fd=4,set=2,opaque="rdonly:/path/to/file"

Chapter 2: QEMU PC System emulator 18

-drive file=/dev/fdset/2,index=0,media=disk

You can connect a CDROM to the slave of ide0:

qemu-system-i386 -drive file=file,if=ide,index=1,media=cdrom

If you don’t specify the "file=" argument, you define an empty drive:

qemu-system-i386 -drive if=ide,index=1,media=cdrom

Instead of -fda, -fdb, you can use:

qemu-system-i386 -drive file=file,index=0,if=floppy

qemu-system-i386 -drive file=file,index=1,if=floppy

By default, interface is "ide" and index is automatically incremented:

qemu-system-i386 -drive file=a -drive file=b"

is interpreted like:

qemu-system-i386 -hda a -hdb b

-mtdblock file

Use file as on-board Flash memory image.

-sd file Use file as SecureDigital card image.

-pflash file

Use file as a parallel flash image.

-snapshot

Write to temporary files instead of disk image files. In this case, the raw disk
image you use is not written back. You can however force the write back by
pressing C-a s (see Section 2.8 [disk images], page 88).

-fsdev local,id=id,path=path,security_model=security_model

[,writeout=writeout][,readonly][,fmode=fmode][,dmode=dmode]

[,throttling.option=value[,throttling.option=value[,...]]]

-fsdev proxy,id=id,socket=socket[,writeout=writeout][,readonly]

-fsdev proxy,id=id,sock_fd=sock_fd[,writeout=writeout][,readonly]

-fsdev synth,id=id[,readonly]

Define a new file system device. Valid options are:

local Accesses to the filesystem are done by QEMU.

proxy Accesses to the filesystem are done by virtfs-proxy-helper(1).

synth Synthetic filesystem, only used by QTests.

id=id Specifies identifier for this device.

path=path

Specifies the export path for the file system device. Files under this
path will be available to the 9p client on the guest.

security_model=security_model

Specifies the security model to be used for this export path.
Supported security models are "passthrough", "mapped-xattr",
"mapped-file" and "none". In "passthrough" security model, files
are stored using the same credentials as they are created on the

Chapter 2: QEMU PC System emulator 19

guest. This requires QEMU to run as root. In "mapped-xattr"
security model, some of the file attributes like uid, gid, mode bits
and link target are stored as file attributes. For "mapped-file"
these attributes are stored in the hidden .virtfs metadata
directory. Directories exported by this security model cannot
interact with other unix tools. "none" security model is same as
passthrough except the sever won’t report failures if it fails to set
file attributes like ownership. Security model is mandatory only
for local fsdriver. Other fsdrivers (like proxy) don’t take security
model as a parameter.

writeout=writeout

This is an optional argument. The only supported value is "imme-
diate". This means that host page cache will be used to read and
write data but write notification will be sent to the guest only when
the data has been reported as written by the storage subsystem.

readonly Enables exporting 9p share as a readonly mount for guests. By
default read-write access is given.

socket=socket

Enables proxy filesystem driver to use passed socket file for com-
municating with virtfs-proxy-helper(1).

sock_fd=sock_fd

Enables proxy filesystem driver to use passed socket descriptor for
communicating with virtfs-proxy-helper(1). Usually a helper like
libvirt will create socketpair and pass one of the fds as sock fd.

fmode=fmode

Specifies the default mode for newly created files on the host. Works
only with security models "mapped-xattr" and "mapped-file".

dmode=dmode

Specifies the default mode for newly created directories on the host.
Works only with security models "mapped-xattr" and "mapped-
file".

throttling.bps-total=b,throttling.bps-read=r,throttling.bps-

write=w

Specify bandwidth throttling limits in bytes per second, either for
all request types or for reads or writes only.

throttling.bps-total-max=bm,bps-read-max=rm,bps-write-max=wm

Specify bursts in bytes per second, either for all request types or
for reads or writes only. Bursts allow the guest I/O to spike above
the limit temporarily.

throttling.iops-total=i,throttling.iops-read=r,

throttling.iops-write=w

Specify request rate limits in requests per second, either for all
request types or for reads or writes only.

Chapter 2: QEMU PC System emulator 20

throttling.iops-total-max=im,throttling.iops-read-max=irm,

throttling.iops-write-max=iwm

Specify bursts in requests per second, either for all request types or
for reads or writes only. Bursts allow the guest I/O to spike above
the limit temporarily.

throttling.iops-size=is

Let every is bytes of a request count as a new request for iops
throttling purposes.

-fsdev option is used along with -device driver "virtio-9p-...".

-device virtio-9p-type,fsdev=id,mount_tag=mount_tag

Options for virtio-9p-... driver are:

type Specifies the variant to be used. Supported values are "pci", "ccw"
or "device", depending on the machine type.

fsdev=id Specifies the id value specified along with -fsdev option.

mount_tag=mount_tag

Specifies the tag name to be used by the guest to mount this export
point.

-virtfs local,path=path,mount_tag=mount_tag

,security_model=security_model[,writeout=writeout][,readonly]

[,fmode=fmode][,dmode=dmode]

-virtfs proxy,socket=socket,mount_tag=mount_tag

[,writeout=writeout][,readonly]

-virtfs proxy,sock_fd=sock_fd,mount_tag=mount_tag

[,writeout=writeout][,readonly]

-virtfs synth,mount_tag=mount_tag

Define a new filesystem device and expose it to the guest using a virtio-9p-
device. The general form of a Virtual File system pass-through options are:

local Accesses to the filesystem are done by QEMU.

proxy Accesses to the filesystem are done by virtfs-proxy-helper(1).

synth Synthetic filesystem, only used by QTests.

id=id Specifies identifier for the filesystem device

path=path

Specifies the export path for the file system device. Files under this
path will be available to the 9p client on the guest.

security_model=security_model

Specifies the security model to be used for this export path.
Supported security models are "passthrough", "mapped-xattr",
"mapped-file" and "none". In "passthrough" security model, files
are stored using the same credentials as they are created on the
guest. This requires QEMU to run as root. In "mapped-xattr"
security model, some of the file attributes like uid, gid, mode bits

Chapter 2: QEMU PC System emulator 21

and link target are stored as file attributes. For "mapped-file"
these attributes are stored in the hidden .virtfs metadata
directory. Directories exported by this security model cannot
interact with other unix tools. "none" security model is same as
passthrough except the sever won’t report failures if it fails to set
file attributes like ownership. Security model is mandatory only
for local fsdriver. Other fsdrivers (like proxy) don’t take security
model as a parameter.

writeout=writeout

This is an optional argument. The only supported value is "imme-
diate". This means that host page cache will be used to read and
write data but write notification will be sent to the guest only when
the data has been reported as written by the storage subsystem.

readonly Enables exporting 9p share as a readonly mount for guests. By
default read-write access is given.

socket=socket

Enables proxy filesystem driver to use passed socket file for com-
municating with virtfs-proxy-helper(1). Usually a helper like libvirt
will create socketpair and pass one of the fds as sock fd.

sock_fd Enables proxy filesystem driver to use passed ’sock fd’ as the socket
descriptor for interfacing with virtfs-proxy-helper(1).

fmode=fmode

Specifies the default mode for newly created files on the host. Works
only with security models "mapped-xattr" and "mapped-file".

dmode=dmode

Specifies the default mode for newly created directories on the host.
Works only with security models "mapped-xattr" and "mapped-
file".

mount_tag=mount_tag

Specifies the tag name to be used by the guest to mount this export
point.

-virtfs_synth

Create synthetic file system image. Note that this option is now deprecated.
Please use -fsdev synth and -device virtio-9p-... instead.

-iscsi Configure iSCSI session parameters.

2.3.3 USB options

-usb Enable the USB driver (if it is not used by default yet).

-usbdevice devname

Add the USB device devname. Note that this option is deprecated, please use
-device usb-... instead. See Section 2.12.1 [usb devices], page 119.

mouse Virtual Mouse. This will override the PS/2 mouse emulation when
activated.

Chapter 2: QEMU PC System emulator 22

tablet Pointer device that uses absolute coordinates (like a touchscreen).
This means QEMU is able to report the mouse position without
having to grab the mouse. Also overrides the PS/2 mouse emulation
when activated.

braille Braille device. This will use BrlAPI to display the braille output
on a real or fake device.

2.3.4 Display options

-display type

Select type of display to use. This option is a replacement for the old style
-sdl/-curses/... options. Valid values for type are

sdl Display video output via SDL (usually in a separate graphics win-
dow; see the SDL documentation for other possibilities).

curses Display video output via curses. For graphics device models which
support a text mode, QEMU can display this output using a
curses/ncurses interface. Nothing is displayed when the graphics
device is in graphical mode or if the graphics device does not
support a text mode. Generally only the VGA device models
support text mode. The font charset used by the guest can be
specified with the charset option, for example charset=CP850 for
IBM CP850 encoding. The default is CP437.

none Do not display video output. The guest will still see an emulated
graphics card, but its output will not be displayed to the QEMU
user. This option differs from the -nographic option in that it only
affects what is done with video output; -nographic also changes the
destination of the serial and parallel port data.

gtk Display video output in a GTK window. This interface provides
drop-down menus and other UI elements to configure and control
the VM during runtime.

vnc Start a VNC server on display <arg>

egl-headless

Offload all OpenGL operations to a local DRI device. For any
graphical display, this display needs to be paired with either VNC
or SPICE displays.

spice-app

Start QEMU as a Spice server and launch the default Spice client
application. The Spice server will redirect the serial consoles and
QEMU monitors. (Since 4.0)

-nographic

Normally, if QEMU is compiled with graphical window support, it displays out-
put such as guest graphics, guest console, and the QEMU monitor in a window.
With this option, you can totally disable graphical output so that QEMU is
a simple command line application. The emulated serial port is redirected on

Chapter 2: QEMU PC System emulator 23

the console and muxed with the monitor (unless redirected elsewhere explic-
itly). Therefore, you can still use QEMU to debug a Linux kernel with a serial
console. Use C-a h for help on switching between the console and monitor.

-curses Normally, if QEMU is compiled with graphical window support, it displays
output such as guest graphics, guest console, and the QEMU monitor in a
window. With this option, QEMU can display the VGA output when in text
mode using a curses/ncurses interface. Nothing is displayed in graphical mode.

-alt-grab

Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that this also
affects the special keys (for fullscreen, monitor-mode switching, etc).

-ctrl-grab

Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this also affects
the special keys (for fullscreen, monitor-mode switching, etc).

-no-quit Disable SDL window close capability.

-sdl Enable SDL.

-spice option[,option[,...]]

Enable the spice remote desktop protocol. Valid options are

port=<nr>

Set the TCP port spice is listening on for plaintext channels.

addr=<addr>

Set the IP address spice is listening on. Default is any address.

ipv4

ipv6

unix Force using the specified IP version.

password=<secret>

Set the password you need to authenticate.

sasl Require that the client use SASL to authenticate with the spice.
The exact choice of authentication method used is controlled
from the system / user’s SASL configuration file for the ’qemu’
service. This is typically found in /etc/sasl2/qemu.conf. If
running QEMU as an unprivileged user, an environment variable
SASL CONF PATH can be used to make it search alternate
locations for the service config. While some SASL auth methods
can also provide data encryption (eg GSSAPI), it is recommended
that SASL always be combined with the ’tls’ and ’x509’ settings
to enable use of SSL and server certificates. This ensures a data
encryption preventing compromise of authentication credentials.

disable-ticketing

Allow client connects without authentication.

disable-copy-paste

Disable copy paste between the client and the guest.

Chapter 2: QEMU PC System emulator 24

disable-agent-file-xfer

Disable spice-vdagent based file-xfer between the client and the
guest.

tls-port=<nr>

Set the TCP port spice is listening on for encrypted channels.

x509-dir=<dir>

Set the x509 file directory. Expects same filenames as -vnc $dis-
play,x509=$dir

x509-key-file=<file>

x509-key-password=<file>

x509-cert-file=<file>

x509-cacert-file=<file>

x509-dh-key-file=<file>

The x509 file names can also be configured individually.

tls-ciphers=<list>

Specify which ciphers to use.

tls-channel=[main|display|cursor|inputs|record|playback]

plaintext-channel=[main|display|cursor|inputs|record|playback]

Force specific channel to be used with or without TLS encryption.
The options can be specified multiple times to configure multiple
channels. The special name "default" can be used to set the default
mode. For channels which are not explicitly forced into one mode
the spice client is allowed to pick tls/plaintext as he pleases.

image-compression=[auto_glz|auto_lz|quic|glz|lz|off]

Configure image compression (lossless). Default is auto glz.

jpeg-wan-compression=[auto|never|always]

zlib-glz-wan-compression=[auto|never|always]

Configure wan image compression (lossy for slow links). Default is
auto.

streaming-video=[off|all|filter]

Configure video stream detection. Default is off.

agent-mouse=[on|off]

Enable/disable passing mouse events via vdagent. Default is on.

playback-compression=[on|off]

Enable/disable audio stream compression (using celt 0.5.1). De-
fault is on.

seamless-migration=[on|off]

Enable/disable spice seamless migration. Default is off.

gl=[on|off]

Enable/disable OpenGL context. Default is off.

Chapter 2: QEMU PC System emulator 25

rendernode=<file>

DRM render node for OpenGL rendering. If not specified, it will
pick the first available. (Since 2.9)

-portrait

Rotate graphical output 90 deg left (only PXA LCD).

-rotate deg

Rotate graphical output some deg left (only PXA LCD).

-vga type Select type of VGA card to emulate. Valid values for type are

cirrus Cirrus Logic GD5446 Video card. All Windows versions starting
from Windows 95 should recognize and use this graphic card. For
optimal performances, use 16 bit color depth in the guest and the
host OS. (This card was the default before QEMU 2.2)

std Standard VGA card with Bochs VBE extensions. If your guest OS
supports the VESA 2.0 VBE extensions (e.g. Windows XP) and
if you want to use high resolution modes (>= 1280x1024x16) then
you should use this option. (This card is the default since QEMU
2.2)

vmware VMWare SVGA-II compatible adapter. Use it if you have suffi-
ciently recent XFree86/XOrg server or Windows guest with a driver
for this card.

qxl QXL paravirtual graphic card. It is VGA compatible (including
VESA 2.0 VBE support). Works best with qxl guest drivers in-
stalled though. Recommended choice when using the spice proto-
col.

tcx (sun4m only) Sun TCX framebuffer. This is the default framebuffer
for sun4m machines and offers both 8-bit and 24-bit colour depths
at a fixed resolution of 1024x768.

cg3 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit frame-
buffer for sun4m machines available in both 1024x768 (OpenBIOS)
and 1152x900 (OBP) resolutions aimed at people wishing to run
older Solaris versions.

virtio Virtio VGA card.

none Disable VGA card.

-full-screen

Start in full screen.

-g widthxheight[xdepth]

Set the initial graphical resolution and depth (PPC, SPARC only).

-vnc display[,option[,option[,...]]]

Normally, if QEMU is compiled with graphical window support, it displays
output such as guest graphics, guest console, and the QEMU monitor in a win-
dow. With this option, you can have QEMU listen on VNC display display and

Chapter 2: QEMU PC System emulator 26

redirect the VGA display over the VNC session. It is very useful to enable the
usb tablet device when using this option (option -device usb-tablet). When
using the VNC display, you must use the -k parameter to set the keyboard
layout if you are not using en-us. Valid syntax for the display is

to=L

With this option, QEMU will try next available VNC displays, until
the number L, if the origianlly defined "-vnc display" is not avail-
able, e.g. port 5900+display is already used by another application.
By default, to=0.

host:d

TCP connections will only be allowed from host on display d. By
convention the TCP port is 5900+d. Optionally, host can be omit-
ted in which case the server will accept connections from any host.

unix:path

Connections will be allowed over UNIX domain sockets where path
is the location of a unix socket to listen for connections on.

none

VNC is initialized but not started. The monitor change command
can be used to later start the VNC server.

Following the display value there may be one or more option flags separated by
commas. Valid options are

reverse

Connect to a listening VNC client via a “reverse” connection. The
client is specified by the display. For reverse network connections
(host:d,reverse), the d argument is a TCP port number, not a
display number.

websocket

Opens an additional TCP listening port dedicated to VNC Web-
socket connections. If a bare websocket option is given, the Web-
socket port is 5700+display. An alternative port can be specified
with the syntax websocket=port.

If host is specified connections will only be allowed from this host.
It is possible to control the websocket listen address independently,
using the syntax websocket=host:port.

If no TLS credentials are provided, the websocket connection runs
in unencrypted mode. If TLS credentials are provided, the web-
socket connection requires encrypted client connections.

password

Require that password based authentication is used for client con-
nections.

The password must be set separately using the set_password com-
mand in the Section 2.6 [pcsys monitor], page 67. The syntax to

Chapter 2: QEMU PC System emulator 27

change your password is: set_password <protocol> <password>

where <protocol> could be either "vnc" or "spice".

If you would like to change <protocol> password expiration, you
should use expire_password <protocol> <expiration-time>

where expiration time could be one of the following options: now,
never, +seconds or UNIX time of expiration, e.g. +60 to make
password expire in 60 seconds, or 1335196800 to make password
expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for this
date and time).

You can also use keywords "now" or "never" for the expiration
time to allow <protocol> password to expire immediately or never
expire.

tls-creds=ID

Provides the ID of a set of TLS credentials to use to secure the VNC
server. They will apply to both the normal VNC server socket
and the websocket socket (if enabled). Setting TLS credentials
will cause the VNC server socket to enable the VeNCrypt auth
mechanism. The credentials should have been previously created
using the -object tls-creds argument.

tls-authz=ID

Provides the ID of the QAuthZ authorization object against which
the client’s x509 distinguished name will validated. This object is
only resolved at time of use, so can be deleted and recreated on
the fly while the VNC server is active. If missing, it will default to
denying access.

sasl

Require that the client use SASL to authenticate with the VNC
server. The exact choice of authentication method used is con-
trolled from the system / user’s SASL configuration file for the
’qemu’ service. This is typically found in /etc/sasl2/qemu.conf. If
running QEMU as an unprivileged user, an environment variable
SASL CONF PATH can be used to make it search alternate loca-
tions for the service config. While some SASL auth methods can
also provide data encryption (eg GSSAPI), it is recommended that
SASL always be combined with the ’tls’ and ’x509’ settings to en-
able use of SSL and server certificates. This ensures a data encryp-
tion preventing compromise of authentication credentials. See the
Section 2.13 [vnc security], page 121, section for details on using
SASL authentication.

sasl-authz=ID

Provides the ID of the QAuthZ authorization object against which
the client’s SASL username will validated. This object is only re-
solved at time of use, so can be deleted and recreated on the fly
while the VNC server is active. If missing, it will default to denying
access.

Chapter 2: QEMU PC System emulator 28

acl

Legacy method for enabling authorization of clients against the
x509 distinguished name and SASL username. It results in the
creation of two authz-list objects with IDs of vnc.username and
vnc.x509dname. The rules for these objects must be configured
with the HMP ACL commands.

This option is deprecated and should no longer be used. The new
sasl-authz and tls-authz options are a replacement.

lossy

Enable lossy compression methods (gradient, JPEG, ...). If this
option is set, VNC client may receive lossy framebuffer updates
depending on its encoding settings. Enabling this option can save
a lot of bandwidth at the expense of quality.

non-adaptive

Disable adaptive encodings. Adaptive encodings are enabled by
default. An adaptive encoding will try to detect frequently updated
screen regions, and send updates in these regions using a lossy
encoding (like JPEG). This can be really helpful to save bandwidth
when playing videos. Disabling adaptive encodings restores the
original static behavior of encodings like Tight.

share=[allow-exclusive|force-shared|ignore]

Set display sharing policy. ’allow-exclusive’ allows clients to ask for
exclusive access. As suggested by the rfb spec this is implemented
by dropping other connections. Connecting multiple clients in par-
allel requires all clients asking for a shared session (vncviewer: -
shared switch). This is the default. ’force-shared’ disables exclusive
client access. Useful for shared desktop sessions, where you don’t
want someone forgetting specify -shared disconnect everybody else.
’ignore’ completely ignores the shared flag and allows everybody
connect unconditionally. Doesn’t conform to the rfb spec but is
traditional QEMU behavior.

key-delay-ms

Set keyboard delay, for key down and key up events, in milliseconds.
Default is 10. Keyboards are low-bandwidth devices, so this slow-
down can help the device and guest to keep up and not lose events
in case events are arriving in bulk. Possible causes for the latter
are flaky network connections, or scripts for automated testing.

2.3.5 i386 target only

-win2k-hack

Use it when installing Windows 2000 to avoid a disk full bug. After Windows
2000 is installed, you no longer need this option (this option slows down the
IDE transfers).

Chapter 2: QEMU PC System emulator 29

-no-fd-bootchk

Disable boot signature checking for floppy disks in BIOS. May be needed to
boot from old floppy disks.

-no-acpi Disable ACPI (Advanced Configuration and Power Interface) support. Use it
if your guest OS complains about ACPI problems (PC target machine only).

-no-hpet Disable HPET support.

-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n]

[,asl_compiler_id=str][,asl_compiler_rev=n][,data=file1[:file2]...]

Add ACPI table with specified header fields and context from specified files.
For file=, take whole ACPI table from the specified files, including all ACPI
headers (possible overridden by other options). For data=, only data portion
of the table is used, all header information is specified in the command line. If
a SLIC table is supplied to QEMU, then the SLIC’s oem id and oem table id
fields will override the same in the RSDT and the FADT (a.k.a. FACP), in
order to ensure the field matches required by the Microsoft SLIC spec and the
ACPI spec.

-smbios file=binary

Load SMBIOS entry from binary file.

-smbios

type=0[,vendor=str][,version=str][,date=str][,release=%d.%d][,uefi=on|off]

Specify SMBIOS type 0 fields

-smbios

type=1[,manufacturer=str][,product=str][,version=str][,serial=str][,uuid=uuid][,sku=str][,family=str]

Specify SMBIOS type 1 fields

-smbios

type=2[,manufacturer=str][,product=str][,version=str][,serial=str][,asset=str][,location=str]

Specify SMBIOS type 2 fields

-smbios

type=3[,manufacturer=str][,version=str][,serial=str][,asset=str][,sku=str]

Specify SMBIOS type 3 fields

-smbios type=4[,sock_

pfx=str][,manufacturer=str][,version=str][,serial=str][,asset=str][,part=str]

Specify SMBIOS type 4 fields

-smbios type=17[,loc_

pfx=str][,bank=str][,manufacturer=str][,serial=str][,asset=str][,part=str][,speed=%d]

Specify SMBIOS type 17 fields

2.3.6 Network options

-nic [tap|bridge|user|l2tpv3|vde|netmap|vhost-

user|socket][,...][,mac=macaddr][,model=mn]

This option is a shortcut for configuring both the on-board (default) guest NIC
hardware and the host network backend in one go. The host backend options

Chapter 2: QEMU PC System emulator 30

are the same as with the corresponding -netdev options below. The guest NIC
model can be set with model=modelname. Use model=help to list the available
device types. The hardware MAC address can be set with mac=macaddr.

The following two example do exactly the same, to show how -nic can be used
to shorten the command line length (note that the e1000 is the default on i386,
so the model=e1000 parameter could even be omitted here, too):

qemu-system-i386 -netdev user,id=n1,ipv6=off -device e1000,netdev=n1,mac=52:54:98:76:54:32

qemu-system-i386 -nic user,ipv6=off,model=e1000,mac=52:54:98:76:54:32

-nic none Indicate that no network devices should be configured. It is used to override the
default configuration (default NIC with “user” host network backend) which is
activated if no other networking options are provided.

-netdev user,id=id[,option][,option][,...]

Configure user mode host network backend which requires no administrator
privilege to run. Valid options are:

id=id Assign symbolic name for use in monitor commands.

ipv4=on|off and ipv6=on|off

Specify that either IPv4 or IPv6 must be enabled. If neither is
specified both protocols are enabled.

net=addr[/mask]

Set IP network address the guest will see. Optionally specify the
netmask, either in the form a.b.c.d or as number of valid top-most
bits. Default is 10.0.2.0/24.

host=addr

Specify the guest-visible address of the host. Default is the 2nd IP
in the guest network, i.e. x.x.x.2.

ipv6-net=addr[/int]

Set IPv6 network address the guest will see (default is fec0::/64).
The network prefix is given in the usual hexadecimal IPv6 address
notation. The prefix size is optional, and is given as the number of
valid top-most bits (default is 64).

ipv6-host=addr

Specify the guest-visible IPv6 address of the host. Default is the
2nd IPv6 in the guest network, i.e. xxxx::2.

restrict=on|off

If this option is enabled, the guest will be isolated, i.e. it will not be
able to contact the host and no guest IP packets will be routed over
the host to the outside. This option does not affect any explicitly
set forwarding rules.

hostname=name

Specifies the client hostname reported by the built-in DHCP server.

Chapter 2: QEMU PC System emulator 31

dhcpstart=addr

Specify the first of the 16 IPs the built-in DHCP server can assign.
Default is the 15th to 31st IP in the guest network, i.e. x.x.x.15 to
x.x.x.31.

dns=addr Specify the guest-visible address of the virtual nameserver. The
address must be different from the host address. Default is the 3rd
IP in the guest network, i.e. x.x.x.3.

ipv6-dns=addr

Specify the guest-visible address of the IPv6 virtual nameserver.
The address must be different from the host address. Default is the
3rd IP in the guest network, i.e. xxxx::3.

dnssearch=domain

Provides an entry for the domain-search list sent by the built-in
DHCP server. More than one domain suffix can be transmitted
by specifying this option multiple times. If supported, this will
cause the guest to automatically try to append the given domain
suffix(es) in case a domain name can not be resolved.

Example:

qemu-system-i386 -nic user,dnssearch=mgmt.example.org,dnssearch=example.org

domainname=domain

Specifies the client domain name reported by the built-in DHCP
server.

tftp=dir When using the user mode network stack, activate a built-in TFTP
server. The files in dir will be exposed as the root of a TFTP server.
The TFTP client on the guest must be configured in binary mode
(use the command bin of the Unix TFTP client).

tftp-server-name=name

In BOOTP reply, broadcast name as the "TFTP server name"
(RFC2132 option 66). This can be used to advise the guest to load
boot files or configurations from a different server than the host
address.

bootfile=file

When using the user mode network stack, broadcast file as the
BOOTP filename. In conjunction with tftp, this can be used to
network boot a guest from a local directory.

Example (using pxelinux):

qemu-system-i386 -hda linux.img -boot n -device e1000,netdev=n1 \

-netdev user,id=n1,tftp=/path/to/tftp/files,bootfile=/pxelinux.0

smb=dir[,smbserver=addr]

When using the user mode network stack, activate a built-in SMB
server so that Windows OSes can access to the host files in dir

transparently. The IP address of the SMB server can be set to addr.
By default the 4th IP in the guest network is used, i.e. x.x.x.4.

Chapter 2: QEMU PC System emulator 32

In the guest Windows OS, the line:

10.0.2.4 smbserver

must be added in the file C:\WINDOWS\LMHOSTS (for windows
9x/Me) or C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS (Windows
NT/2000).

Then dir can be accessed in \\smbserver\qemu.

Note that a SAMBA server must be installed on the host OS.

hostfwd=[tcp|udp]:[hostaddr]:hostport-[guestaddr]:guestport

Redirect incoming TCP or UDP connections to the host port host-
port to the guest IP address guestaddr on guest port guestport. If
guestaddr is not specified, its value is x.x.x.15 (default first address
given by the built-in DHCP server). By specifying hostaddr, the
rule can be bound to a specific host interface. If no connection type
is set, TCP is used. This option can be given multiple times.

For example, to redirect host X11 connection from screen 1 to guest
screen 0, use the following:

on the host

qemu-system-i386 -nic user,hostfwd=tcp:127.0.0.1:6001-:6000

this host xterm should open in the guest X11 server

xterm -display :1

To redirect telnet connections from host port 5555 to telnet port
on the guest, use the following:

on the host

qemu-system-i386 -nic user,hostfwd=tcp::5555-:23

telnet localhost 5555

Then when you use on the host telnet localhost 5555, you con-
nect to the guest telnet server.

guestfwd=[tcp]:server:port-dev

guestfwd=[tcp]:server:port-cmd:command

Forward guest TCP connections to the IP address server on port
port to the character device dev or to a program executed by
cmd:command which gets spawned for each connection. This op-
tion can be given multiple times.

You can either use a chardev directly and have that one used
throughout QEMU’s lifetime, like in the following example:

open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever

the guest accesses it

qemu-system-i386 -nic user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321

Or you can execute a command on every TCP connection estab-
lished by the guest, so that QEMU behaves similar to an inetd
process for that virtual server:

call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234

and connect the TCP stream to its stdin/stdout

qemu-system-i386 -nic ’user,id=n1,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321’

Chapter 2: QEMU PC System emulator 33

-netdev

tap,id=id[,fd=h][,ifname=name][,script=file][,downscript=dfile][,br=bridge][,helper=helper]

Configure a host TAP network backend with ID id.

Use the network script file to configure it and the network script dfile to de-
configure it. If name is not provided, the OS automatically provides one. The
default network configure script is /etc/qemu-ifup and the default network
deconfigure script is /etc/qemu-ifdown. Use script=no or downscript=no to
disable script execution.

If running QEMU as an unprivileged user, use the network helper helper to
configure the TAP interface and attach it to the bridge. The default network
helper executable is /path/to/qemu-bridge-helper and the default bridge
device is br0.

fd=h can be used to specify the handle of an already opened host TAP interface.

Examples:

#launch a QEMU instance with the default network script

qemu-system-i386 linux.img -nic tap

#launch a QEMU instance with two NICs, each one connected

#to a TAP device

qemu-system-i386 linux.img \

-netdev tap,id=nd0,ifname=tap0 -device e1000,netdev=nd0 \

-netdev tap,id=nd1,ifname=tap1 -device rtl8139,netdev=nd1

#launch a QEMU instance with the default network helper to

#connect a TAP device to bridge br0

qemu-system-i386 linux.img -device virtio-net-pci,netdev=n1 \

-netdev tap,id=n1,"helper=/path/to/qemu-bridge-helper"

-netdev bridge,id=id[,br=bridge][,helper=helper]

Connect a host TAP network interface to a host bridge device.

Use the network helper helper to configure the TAP interface and attach it to
the bridge. The default network helper executable is /path/to/qemu-bridge-
helper and the default bridge device is br0.

Examples:

#launch a QEMU instance with the default network helper to

#connect a TAP device to bridge br0

qemu-system-i386 linux.img -netdev bridge,id=n1 -device virtio-net,netdev=n1

#launch a QEMU instance with the default network helper to

#connect a TAP device to bridge qemubr0

qemu-system-i386 linux.img -netdev bridge,br=qemubr0,id=n1 -device virtio-net,netdev=n1

-netdev socket,id=id[,fd=h][,listen=[host]:port][,connect=host:port]

This host network backend can be used to connect the guest’s network to an-
other QEMU virtual machine using a TCP socket connection. If listen is
specified, QEMU waits for incoming connections on port (host is optional).
connect is used to connect to another QEMU instance using the listen op-
tion. fd=h specifies an already opened TCP socket.

Chapter 2: QEMU PC System emulator 34

Example:

launch a first QEMU instance

qemu-system-i386 linux.img \

-device e1000,netdev=n1,mac=52:54:00:12:34:56 \

-netdev socket,id=n1,listen=:1234

connect the network of this instance to the network of the first instance

qemu-system-i386 linux.img \

-device e1000,netdev=n2,mac=52:54:00:12:34:57 \

-netdev socket,id=n2,connect=127.0.0.1:1234

-netdev socket,id=id[,fd=h][,mcast=maddr:port[,localaddr=addr]]

Configure a socket host network backend to share the guest’s network traffic
with another QEMU virtual machines using a UDP multicast socket, effectively
making a bus for every QEMU with same multicast address maddr and port.
NOTES:

1. Several QEMU can be running on different hosts and share same bus (as-
suming correct multicast setup for these hosts).

2. mcast support is compatible with User Mode Linux (argument
ethN=mcast), see http://user-mode-linux.sf.net.

3. Use fd=h to specify an already opened UDP multicast socket.

Example:

launch one QEMU instance

qemu-system-i386 linux.img \

-device e1000,netdev=n1,mac=52:54:00:12:34:56 \

-netdev socket,id=n1,mcast=230.0.0.1:1234

launch another QEMU instance on same "bus"

qemu-system-i386 linux.img \

-device e1000,netdev=n2,mac=52:54:00:12:34:57 \

-netdev socket,id=n2,mcast=230.0.0.1:1234

launch yet another QEMU instance on same "bus"

qemu-system-i386 linux.img \

-device e1000,netdev=n3,mac=52:54:00:12:34:58 \

-netdev socket,id=n3,mcast=230.0.0.1:1234

Example (User Mode Linux compat.):

launch QEMU instance (note mcast address selected is UML’s default)

qemu-system-i386 linux.img \

-device e1000,netdev=n1,mac=52:54:00:12:34:56 \

-netdev socket,id=n1,mcast=239.192.168.1:1102

launch UML

/path/to/linux ubd0=/path/to/root_fs eth0=mcast

Example (send packets from host’s 1.2.3.4):

qemu-system-i386 linux.img \

-device e1000,netdev=n1,mac=52:54:00:12:34:56 \

-netdev socket,id=n1,mcast=239.192.168.1:1102,localaddr=1.2.3.4

http://user-mode-linux.sf.net

Chapter 2: QEMU PC System emulator 35

-netdev

l2tpv3,id=id,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport],txsession=txsession[,rxsession=rxsession][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=txcookie][,rxcookie=rxcookie][,offset=offset]

Configure a L2TPv3 pseudowire host network backend. L2TPv3 (RFC3391)
is a popular protocol to transport Ethernet (and other Layer 2) data frames
between two systems. It is present in routers, firewalls and the Linux kernel
(from version 3.3 onwards).

This transport allows a VM to communicate to another VM, router or firewall
directly.

src=srcaddr

source address (mandatory)

dst=dstaddr

destination address (mandatory)

udp select udp encapsulation (default is ip).

srcport=srcport

source udp port.

dstport=dstport

destination udp port.

ipv6 force v6, otherwise defaults to v4.

rxcookie=rxcookie

txcookie=txcookie

Cookies are a weak form of security in the l2tpv3 specification.
Their function is mostly to prevent misconfiguration. By default
they are 32 bit.

cookie64 Set cookie size to 64 bit instead of the default 32

counter=off

Force a ’cut-down’ L2TPv3 with no counter as in draft-mkonstan-
l2tpext-keyed-ipv6-tunnel-00

pincounter=on

Work around broken counter handling in peer. This may also help
on networks which have packet reorder.

offset=offset

Add an extra offset between header and data

For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to the bridge
br-lan on the remote Linux host 1.2.3.4:

Setup tunnel on linux host using raw ip as encapsulation

on 1.2.3.4

ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 \

encap udp udp_sport 16384 udp_dport 16384

ip l2tp add session tunnel_id 1 name vmtunnel0 session_id \

0xFFFFFFFF peer_session_id 0xFFFFFFFF

ifconfig vmtunnel0 mtu 1500

Chapter 2: QEMU PC System emulator 36

ifconfig vmtunnel0 up

brctl addif br-lan vmtunnel0

on 4.3.2.1

launch QEMU instance - if your network has reorder or is very lossy add ,pincounter

qemu-system-i386 linux.img -device e1000,netdev=n1 \

-netdev l2tpv3,id=n1,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter

-netdev

vde,id=id[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]

Configure VDE backend to connect to PORT n of a vde switch running on host
and listening for incoming connections on socketpath. Use GROUP groupname
and MODE octalmode to change default ownership and permissions for com-
munication port. This option is only available if QEMU has been compiled
with vde support enabled.

Example:

launch vde switch

vde_switch -F -sock /tmp/myswitch

launch QEMU instance

qemu-system-i386 linux.img -nic vde,sock=/tmp/myswitch

-netdev vhost-user,chardev=id[,vhostforce=on|off][,queues=n]

Establish a vhost-user netdev, backed by a chardev id. The chardev should be
a unix domain socket backed one. The vhost-user uses a specifically defined
protocol to pass vhost ioctl replacement messages to an application on the
other end of the socket. On non-MSIX guests, the feature can be forced with
vhostforce. Use ’queues=n’ to specify the number of queues to be created for
multiqueue vhost-user.

Example:

qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \

-numa node,memdev=mem \

-chardev socket,id=chr0,path=/path/to/socket \

-netdev type=vhost-user,id=net0,chardev=chr0 \

-device virtio-net-pci,netdev=net0

-netdev hubport,id=id,hubid=hubid[,netdev=nd]

Create a hub port on the emulated hub with ID hubid.

The hubport netdev lets you connect a NIC to a QEMU emulated hub instead
of a single netdev. Alternatively, you can also connect the hubport to another
netdev with ID nd by using the netdev=nd option.

-net nic[,netdev=nd][,macaddr=mac][,model=type]

[,name=name][,addr=addr][,vectors=v]

Legacy option to configure or create an on-board (or machine default) Network
Interface Card(NIC) and connect it either to the emulated hub with ID 0 (i.e.

Chapter 2: QEMU PC System emulator 37

the default hub), or to the netdev nd. The NIC is an e1000 by default on the
PC target. Optionally, the MAC address can be changed to mac, the device
address set to addr (PCI cards only), and a name can be assigned for use in
monitor commands. Optionally, for PCI cards, you can specify the number v
of MSI-X vectors that the card should have; this option currently only affects
virtio cards; set v = 0 to disable MSI-X. If no -net option is specified, a single
NIC is created. QEMU can emulate several different models of network card.
Use -net nic,model=help for a list of available devices for your target.

-net user|tap|bridge|socket|l2tpv3|vde[,...][,name=name]

Configure a host network backend (with the options corresponding to the same
-netdev option) and connect it to the emulated hub 0 (the default hub). Use
name to specify the name of the hub port.

2.3.7 Character device options

The general form of a character device option is:

-chardev backend,id=id[,mux=on|off][,options]

Backend is one of: null, socket, udp, msmouse, vc, ringbuf, file, pipe,
console, serial, pty, stdio, braille, tty, parallel, parport, spicevmc,
spiceport. The specific backend will determine the applicable options.

Use -chardev help to print all available chardev backend types.

All devices must have an id, which can be any string up to 127 characters long.
It is used to uniquely identify this device in other command line directives.

A character device may be used in multiplexing mode by multiple front-ends.
Specify mux=on to enable this mode. A multiplexer is a "1:N" device, and
here the "1" end is your specified chardev backend, and the "N" end is the
various parts of QEMU that can talk to a chardev. If you create a chardev
with id=myid and mux=on, QEMU will create a multiplexer with your specified
ID, and you can then configure multiple front ends to use that chardev ID for
their input/output. Up to four different front ends can be connected to a single
multiplexed chardev. (Without multiplexing enabled, a chardev can only be
used by a single front end.) For instance you could use this to allow a single
stdio chardev to be used by two serial ports and the QEMU monitor:

-chardev stdio,mux=on,id=char0 \

-mon chardev=char0,mode=readline \

-serial chardev:char0 \

-serial chardev:char0

You can have more than one multiplexer in a system configuration; for instance
you could have a TCP port multiplexed between UART 0 and UART 1, and
stdio multiplexed between the QEMU monitor and a parallel port:

-chardev stdio,mux=on,id=char0 \

-mon chardev=char0,mode=readline \

-parallel chardev:char0 \

-chardev tcp,...,mux=on,id=char1 \

-serial chardev:char1 \

-serial chardev:char1

Chapter 2: QEMU PC System emulator 38

When you’re using a multiplexed character device, some escape sequences are
interpreted in the input. See Section 2.5 [mux keys], page 67.

Note that some other command line options may implicitly create multiplexed
character backends; for instance -serial mon:stdio creates a multiplexed stdio
backend connected to the serial port and the QEMU monitor, and -nographic

also multiplexes the console and the monitor to stdio.

There is currently no support for multiplexing in the other direction (where a
single QEMU front end takes input and output from multiple chardevs).

Every backend supports the logfile option, which supplies the path to a file
to record all data transmitted via the backend. The logappend option controls
whether the log file will be truncated or appended to when opened.

The available backends are:

-chardev null,id=id

A void device. This device will not emit any data, and will drop any data it
receives. The null backend does not take any options.

-chardev socket,id=id[,TCP options or unix

options][,server][,nowait][,telnet][,websocket][,reconnect=seconds][,tls-

creds=id][,tls-authz=id]

Create a two-way stream socket, which can be either a TCP or a unix socket. A
unix socket will be created if path is specified. Behaviour is undefined if TCP
options are specified for a unix socket.

server specifies that the socket shall be a listening socket.

nowait specifies that QEMU should not block waiting for a client to connect
to a listening socket.

telnet specifies that traffic on the socket should interpret telnet escape se-
quences.

websocket specifies that the socket uses WebSocket protocol for communica-
tion.

reconnect sets the timeout for reconnecting on non-server sockets when the
remote end goes away. qemu will delay this many seconds and then attempt to
reconnect. Zero disables reconnecting, and is the default.

tls-creds requests enablement of the TLS protocol for encryption, and spec-
ifies the id of the TLS credentials to use for the handshake. The credentials
must be previously created with the -object tls-creds argument.

tls-auth provides the ID of the QAuthZ authorization object against which the
client’s x509 distinguished name will be validated. This object is only resolved
at time of use, so can be deleted and recreated on the fly while the chardev
server is active. If missing, it will default to denying access.

TCP and unix socket options are given below:

TCP options: port=port[,host=host][,to=to][,ipv4][,ipv6][,nodelay]

host for a listening socket specifies the local address to be bound.
For a connecting socket species the remote host to connect to.

Chapter 2: QEMU PC System emulator 39

host is optional for listening sockets. If not specified it defaults
to 0.0.0.0.

port for a listening socket specifies the local port to be bound. For
a connecting socket specifies the port on the remote host to connect
to. port can be given as either a port number or a service name.
port is required.

to is only relevant to listening sockets. If it is specified, and port

cannot be bound, QEMU will attempt to bind to subsequent ports
up to and including to until it succeeds. to must be specified as a
port number.

ipv4 and ipv6 specify that either IPv4 or IPv6 must be used. If
neither is specified the socket may use either protocol.

nodelay disables the Nagle algorithm.

unix options: path=path

path specifies the local path of the unix socket. path is required.

-chardev

udp,id=id[,host=host],port=port[,localaddr=localaddr][,localport=localport][,ipv4][,ipv6]

Sends all traffic from the guest to a remote host over UDP.

host specifies the remote host to connect to. If not specified it defaults to
localhost.

port specifies the port on the remote host to connect to. port is required.

localaddr specifies the local address to bind to. If not specified it defaults to
0.0.0.0.

localport specifies the local port to bind to. If not specified any available local
port will be used.

ipv4 and ipv6 specify that either IPv4 or IPv6 must be used. If neither is
specified the device may use either protocol.

-chardev msmouse,id=id

Forward QEMU’s emulated msmouse events to the guest. msmouse does not
take any options.

-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]

Connect to a QEMU text console. vc may optionally be given a specific size.

width and height specify the width and height respectively of the console, in
pixels.

cols and rows specify that the console be sized to fit a text console with the
given dimensions.

-chardev ringbuf,id=id[,size=size]

Create a ring buffer with fixed size size. size must be a power of two and
defaults to 64K.

-chardev file,id=id,path=path

Log all traffic received from the guest to a file.

path specifies the path of the file to be opened. This file will be created if it
does not already exist, and overwritten if it does. path is required.

Chapter 2: QEMU PC System emulator 40

-chardev pipe,id=id,path=path

Create a two-way connection to the guest. The behaviour differs slightly be-
tween Windows hosts and other hosts:

On Windows, a single duplex pipe will be created at \\.pipe\path.

On other hosts, 2 pipes will be created called path.in and path.out. Data
written to path.in will be received by the guest. Data written by the guest
can be read from path.out. QEMU will not create these fifos, and requires
them to be present.

path forms part of the pipe path as described above. path is required.

-chardev console,id=id

Send traffic from the guest to QEMU’s standard output. console does not take
any options.

console is only available on Windows hosts.

-chardev serial,id=id,path=path

Send traffic from the guest to a serial device on the host.

On Unix hosts serial will actually accept any tty device, not only serial lines.

path specifies the name of the serial device to open.

-chardev pty,id=id

Create a new pseudo-terminal on the host and connect to it. pty does not take
any options.

pty is not available on Windows hosts.

-chardev stdio,id=id[,signal=on|off]

Connect to standard input and standard output of the QEMU process.

signal controls if signals are enabled on the terminal, that includes exiting
QEMU with the key sequence Control-c. This option is enabled by default,
use signal=off to disable it.

-chardev braille,id=id

Connect to a local BrlAPI server. braille does not take any options.

-chardev tty,id=id,path=path

tty is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and Drag-
onFlyBSD hosts. It is an alias for serial.

path specifies the path to the tty. path is required.

-chardev parallel,id=id,path=path

-chardev parport,id=id,path=path

parallel is only available on Linux, FreeBSD and DragonFlyBSD hosts.

Connect to a local parallel port.

path specifies the path to the parallel port device. path is required.

-chardev spicevmc,id=id,debug=debug,name=name

spicevmc is only available when spice support is built in.

debug debug level for spicevmc

name name of spice channel to connect to

Connect to a spice virtual machine channel, such as vdiport.

Chapter 2: QEMU PC System emulator 41

-chardev spiceport,id=id,debug=debug,name=name

spiceport is only available when spice support is built in.

debug debug level for spicevmc

name name of spice port to connect to

Connect to a spice port, allowing a Spice client to handle the traffic identified
by a name (preferably a fqdn).

2.3.8 Bluetooth(R) options

-bt hci[...]

Defines the function of the corresponding Bluetooth HCI. -bt options are
matched with the HCIs present in the chosen machine type. For example
when emulating a machine with only one HCI built into it, only the first -bt
hci[...] option is valid and defines the HCI’s logic. The Transport Layer is
decided by the machine type. Currently the machines n800 and n810 have one
HCI and all other machines have none.

Note: This option and the whole bluetooth subsystem is considered as depre-
cated. If you still use it, please send a mail to qemu-devel@nongnu.org where
you describe your usecase.

The following three types are recognized:

-bt hci,null

(default) The corresponding Bluetooth HCI assumes no internal
logic and will not respond to any HCI commands or emit events.

-bt hci,host[:id]

(bluez only) The corresponding HCI passes commands / events to
/ from the physical HCI identified by the name id (default: hci0)
on the computer running QEMU. Only available on bluez capable
systems like Linux.

-bt hci[,vlan=n]

Add a virtual, standard HCI that will participate in the Bluetooth
scatternet n (default 0). Similarly to -net VLANs, devices inside
a bluetooth network n can only communicate with other devices in
the same network (scatternet).

-bt vhci[,vlan=n]

(Linux-host only) Create a HCI in scatternet n (default 0) attached to the
host bluetooth stack instead of to the emulated target. This allows the host
and target machines to participate in a common scatternet and communicate.
Requires the Linux vhci driver installed. Can be used as following:

qemu-system-i386 [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5

-bt device:dev[,vlan=n]

Emulate a bluetooth device dev and place it in network n (default 0). QEMU
can only emulate one type of bluetooth devices currently:

keyboard Virtual wireless keyboard implementing the HIDP bluetooth pro-
file.

mailto:qemu-devel@nongnu.org

Chapter 2: QEMU PC System emulator 42

2.3.9 TPM device options

The general form of a TPM device option is:

-tpmdev backend,id=id[,options]

The specific backend type will determine the applicable options. The -tpmdev

option creates the TPM backend and requires a -device option that specifies
the TPM frontend interface model.

Use -tpmdev help to print all available TPM backend types.

The available backends are:

-tpmdev passthrough,id=id,path=path,cancel-path=cancel-path

(Linux-host only) Enable access to the host’s TPM using the passthrough driver.

path specifies the path to the host’s TPM device, i.e., on a Linux host this
would be /dev/tpm0. path is optional and by default /dev/tpm0 is used.

cancel-path specifies the path to the host TPM device’s sysfs entry allowing
for cancellation of an ongoing TPM command. cancel-path is optional and
by default QEMU will search for the sysfs entry to use.

Some notes about using the host’s TPM with the passthrough driver:

The TPM device accessed by the passthrough driver must not be used by any
other application on the host.

Since the host’s firmware (BIOS/UEFI) has already initialized the TPM, the
VM’s firmware (BIOS/UEFI) will not be able to initialize the TPM again
and may therefore not show a TPM-specific menu that would otherwise allow
the user to configure the TPM, e.g., allow the user to enable/disable or acti-
vate/deactivate the TPM. Further, if TPM ownership is released from within
a VM then the host’s TPM will get disabled and deactivated. To enable and
activate the TPM again afterwards, the host has to be rebooted and the user is
required to enter the firmware’s menu to enable and activate the TPM. If the
TPM is left disabled and/or deactivated most TPM commands will fail.

To create a passthrough TPM use the following two options:

-tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0

Note that the -tpmdev id is tpm0 and is referenced by tpmdev=tpm0 in the
device option.

-tpmdev emulator,id=id,chardev=dev

(Linux-host only) Enable access to a TPM emulator using Unix domain socket
based chardev backend.

chardev specifies the unique ID of a character device backend that provides
connection to the software TPM server.

To create a TPM emulator backend device with chardev socket backend:

-chardev socket,id=chrtpm,path=/tmp/swtpm-sock -tpmdev emulator,id=tpm0,chardev=chrtpm -device tpm-tis,tpmdev=tpm0

Chapter 2: QEMU PC System emulator 43

2.3.10 Linux/Multiboot boot specific

When using these options, you can use a given Linux or Multiboot kernel without installing
it in the disk image. It can be useful for easier testing of various kernels.

-kernel bzImage

Use bzImage as kernel image. The kernel can be either a Linux kernel or in
multiboot format.

-append cmdline

Use cmdline as kernel command line

-initrd file

Use file as initial ram disk.

-initrd "file1 arg=foo,file2"

This syntax is only available with multiboot.

Use file1 and file2 as modules and pass arg=foo as parameter to the first module.

-dtb file Use file as a device tree binary (dtb) image and pass it to the kernel on boot.

2.3.11 Debug/Expert options

-fw_cfg [name=]name,file=file

Add named fw cfg entry with contents from file file.

-fw_cfg [name=]name,string=str

Add named fw cfg entry with contents from string str.

The terminating NUL character of the contents of str will not be included as
part of the fw cfg item data. To insert contents with embedded NUL characters,
you have to use the file parameter.

The fw cfg entries are passed by QEMU through to the guest.

Example:

-fw_cfg name=opt/com.mycompany/blob,file=./my_blob.bin

creates an fw cfg entry named opt/com.mycompany/blob with contents from
./my blob.bin.

-serial dev

Redirect the virtual serial port to host character device dev. The default device
is vc in graphical mode and stdio in non graphical mode.

This option can be used several times to simulate up to 4 serial ports.

Use -serial none to disable all serial ports.

Available character devices are:

vc[:WxH] Virtual console. Optionally, a width and height can be given in
pixel with

vc:800x600

It is also possible to specify width or height in characters:

vc:80Cx24C

pty [Linux only] Pseudo TTY (a new PTY is automatically allocated)

Chapter 2: QEMU PC System emulator 44

none No device is allocated.

null void device

chardev:id

Use a named character device defined with the -chardev option.

/dev/XXX [Linux only] Use host tty, e.g. /dev/ttyS0. The host serial port
parameters are set according to the emulated ones.

/dev/parportN

[Linux only, parallel port only] Use host parallel port N. Currently
SPP and EPP parallel port features can be used.

file:filename

Write output to filename. No character can be read.

stdio [Unix only] standard input/output

pipe:filename

name pipe filename

COMn [Windows only] Use host serial port n

udp:[remote_host]:remote_port[@[src_ip]:src_port]

This implements UDP Net Console. When remote host or src ip
are not specified they default to 0.0.0.0. When not using a spec-
ified src port a random port is automatically chosen.

If you just want a simple readonly console you can use netcat or
nc, by starting QEMU with: -serial udp::4555 and nc as: nc -u

-l -p 4555. Any time QEMU writes something to that port it will
appear in the netconsole session.

If you plan to send characters back via netconsole or you want to
stop and start QEMU a lot of times, you should have QEMU use
the same source port each time by using something like -serial

udp::4555@:4556 to QEMU. Another approach is to use a patched
version of netcat which can listen to a TCP port and send and
receive characters via udp. If you have a patched version of netcat
which activates telnet remote echo and single char transfer, then
you can use the following options to set up a netcat redirector to
allow telnet on port 5555 to access the QEMU port.

QEMU Options:

-serial udp::4555@:4556

netcat options:

-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T

telnet options:

localhost 5555

tcp:[host]:port[,server][,nowait][,nodelay][,reconnect=seconds]

The TCP Net Console has two modes of operation. It can send the
serial I/O to a location or wait for a connection from a location. By

Chapter 2: QEMU PC System emulator 45

default the TCP Net Console is sent to host at the port. If you use
the server option QEMU will wait for a client socket application
to connect to the port before continuing, unless the nowait option
was specified. The nodelay option disables the Nagle buffering
algorithm. The reconnect option only applies if noserver is set, if
the connection goes down it will attempt to reconnect at the given
interval. If host is omitted, 0.0.0.0 is assumed. Only one TCP
connection at a time is accepted. You can use telnet to connect
to the corresponding character device.

Example to send tcp console to 192.168.0.2 port 4444

-serial tcp:192.168.0.2:4444

Example to listen and wait on port 4444 for connection

-serial tcp::4444,server

Example to not wait and listen on ip 192.168.0.100 port

4444

-serial tcp:192.168.0.100:4444,server,nowait

telnet:host:port[,server][,nowait][,nodelay]

The telnet protocol is used instead of raw tcp sockets. The options
work the same as if you had specified -serial tcp. The difference
is that the port acts like a telnet server or client using telnet option
negotiation. This will also allow you to send the MAGIC SYSRQ
sequence if you use a telnet that supports sending the break se-
quence. Typically in unix telnet you do it with Control-] and then
type "send break" followed by pressing the enter key.

websocket:host:port,server[,nowait][,nodelay]

The WebSocket protocol is used instead of raw tcp socket. The
port acts as a WebSocket server. Client mode is not supported.

unix:path[,server][,nowait][,reconnect=seconds]

A unix domain socket is used instead of a tcp socket. The option
works the same as if you had specified -serial tcp except the unix
domain socket path is used for connections.

mon:dev_string

This is a special option to allow the monitor to be multiplexed onto
another serial port. The monitor is accessed with key sequence of
Control-a and then pressing c. dev string should be any one of
the serial devices specified above. An example to multiplex the
monitor onto a telnet server listening on port 4444 would be:

-serial mon:telnet::4444,server,nowait

When the monitor is multiplexed to stdio in this way, Ctrl+C will
not terminate QEMU any more but will be passed to the guest
instead.

braille Braille device. This will use BrlAPI to display the braille output
on a real or fake device.

Chapter 2: QEMU PC System emulator 46

msmouse Three button serial mouse. Configure the guest to use Microsoft
protocol.

-parallel dev

Redirect the virtual parallel port to host device dev (same devices as the serial
port). On Linux hosts, /dev/parportN can be used to use hardware devices
connected on the corresponding host parallel port.

This option can be used several times to simulate up to 3 parallel ports.

Use -parallel none to disable all parallel ports.

-monitor dev

Redirect the monitor to host device dev (same devices as the serial port). The
default device is vc in graphical mode and stdio in non graphical mode. Use
-monitor none to disable the default monitor.

-qmp dev Like -monitor but opens in ’control’ mode.

-qmp-pretty dev

Like -qmp but uses pretty JSON formatting.

-mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]

Setup monitor on chardev name. pretty turns on JSON pretty printing easing
human reading and debugging.

-debugcon dev

Redirect the debug console to host device dev (same devices as the serial port).
The debug console is an I/O port which is typically port 0xe9; writing to that
I/O port sends output to this device. The default device is vc in graphical
mode and stdio in non graphical mode.

-pidfile file

Store the QEMU process PID in file. It is useful if you launch QEMU from a
script.

-singlestep

Run the emulation in single step mode.

--preconfig

Pause QEMU for interactive configuration before the machine is created, which
allows querying and configuring properties that will affect machine initializa-
tion. Use QMP command ’x-exit-preconfig’ to exit the preconfig state and move
to the next state (i.e. run guest if -S isn’t used or pause the second time if -S
is used). This option is experimental.

-S Do not start CPU at startup (you must type ’c’ in the monitor).

-realtime mlock=on|off

Run qemu with realtime features. mlocking qemu and guest memory can be
enabled via mlock=on (enabled by default).

-overcommit mem-lock=on|off

-overcommit cpu-pm=on|off

Run qemu with hints about host resource overcommit. The default is to assume
that host overcommits all resources.

Chapter 2: QEMU PC System emulator 47

Locking qemu and guest memory can be enabled via mem-lock=on (disabled by
default). This works when host memory is not overcommitted and reduces the
worst-case latency for guest. This is equivalent to realtime.

Guest ability to manage power state of host cpus (increasing latency for other
processes on the same host cpu, but decreasing latency for guest) can be enabled
via cpu-pm=on (disabled by default). This works best when host CPU is not
overcommitted. When used, host estimates of CPU cycle and power utilization
will be incorrect, not taking into account guest idle time.

-gdb dev Wait for gdb connection on device dev (see Section 2.15 [gdb usage], page 129).
Typical connections will likely be TCP-based, but also UDP, pseudo TTY, or
even stdio are reasonable use case. The latter is allowing to start QEMU from
within gdb and establish the connection via a pipe:

(gdb) target remote | exec qemu-system-i386 -gdb stdio ...

-s Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234 (see
Section 2.15 [gdb usage], page 129).

-d item1[,...]

Enable logging of specified items. Use ’-d help’ for a list of log items.

-D logfile

Output log in logfile instead of to stderr

-dfilter range1[,...]

Filter debug output to that relevant to a range of target addresses. The filter
spec can be either start+size, start-size or start..end where start end and size
are the addresses and sizes required. For example:

-dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000

Will dump output for any code in the 0x1000 sized block starting at 0x8000 and
the 0x200 sized block starting at 0xffffffc000080000 and another 0x1000 sized
block starting at 0xffffffc00005f000.

-seed number

Force the guest to use a deterministic pseudo-random number generator, seeded
with number. This does not affect crypto routines within the host.

-L path Set the directory for the BIOS, VGA BIOS and keymaps.

To list all the data directories, use -L help.

-bios file

Set the filename for the BIOS.

-enable-kvm

Enable KVM full virtualization support. This option is only available if KVM
support is enabled when compiling.

-xen-domid id

Specify xen guest domain id (XEN only).

Chapter 2: QEMU PC System emulator 48

-xen-attach

Attach to existing xen domain. libxl will use this when starting QEMU (XEN
only). Restrict set of available xen operations to specified domain id (XEN
only).

-no-reboot

Exit instead of rebooting.

-no-shutdown

Don’t exit QEMU on guest shutdown, but instead only stop the emulation.
This allows for instance switching to monitor to commit changes to the disk
image.

-loadvm file

Start right away with a saved state (loadvm in monitor)

-daemonize

Daemonize the QEMU process after initialization. QEMU will not detach from
standard IO until it is ready to receive connections on any of its devices. This
option is a useful way for external programs to launch QEMU without having
to cope with initialization race conditions.

-option-rom file

Load the contents of file as an option ROM. This option is useful to load things
like EtherBoot.

-rtc [base=utc|localtime|datetime][,clock=host|rt|vm][,driftfix=none|slew]

Specify base as utc or localtime to let the RTC start at the current UTC or
local time, respectively. localtime is required for correct date in MS-DOS or
Windows. To start at a specific point in time, provide datetime in the format
2006-06-17T16:01:21 or 2006-06-17. The default base is UTC.

By default the RTC is driven by the host system time. This allows using of
the RTC as accurate reference clock inside the guest, specifically if the host
time is smoothly following an accurate external reference clock, e.g. via NTP.
If you want to isolate the guest time from the host, you can set clock to rt

instead, which provides a host monotonic clock if host support it. To even
prevent the RTC from progressing during suspension, you can set clock to vm

(virtual clock). ‘clock=vm’ is recommended especially in icount mode in order
to preserve determinism; however, note that in icount mode the speed of the
virtual clock is variable and can in general differ from the host clock.

Enable driftfix (i386 targets only) if you experience time drift problems,
specifically with Windows’ ACPI HAL. This option will try to figure out how
many timer interrupts were not processed by the Windows guest and will re-
inject them.

-icount

[shift=N|auto][,rr=record|replay,rrfile=filename,rrsnapshot=snapshot]

Enable virtual instruction counter. The virtual cpu will execute one instruction
every 2^N ns of virtual time. If auto is specified then the virtual cpu speed
will be automatically adjusted to keep virtual time within a few seconds of real
time.

Chapter 2: QEMU PC System emulator 49

When the virtual cpu is sleeping, the virtual time will advance at default speed
unless sleep=on|off is specified. With sleep=on|off, the virtual time will
jump to the next timer deadline instantly whenever the virtual cpu goes to
sleep mode and will not advance if no timer is enabled. This behavior give
deterministic execution times from the guest point of view.

Note that while this option can give deterministic behavior, it does not provide
cycle accurate emulation. Modern CPUs contain superscalar out of order cores
with complex cache hierarchies. The number of instructions executed often has
little or no correlation with actual performance.

align=on will activate the delay algorithm which will try to synchronise the
host clock and the virtual clock. The goal is to have a guest running at the
real frequency imposed by the shift option. Whenever the guest clock is behind
the host clock and if align=on is specified then we print a message to the user
to inform about the delay. Currently this option does not work when shift is
auto. Note: The sync algorithm will work for those shift values for which the
guest clock runs ahead of the host clock. Typically this happens when the shift
value is high (how high depends on the host machine).

When rr option is specified deterministic record/replay is enabled. Replay log
is written into filename file in record mode and read from this file in replay
mode.

Option rrsnapshot is used to create new vm snapshot named snapshot at the
start of execution recording. In replay mode this option is used to load the
initial VM state.

-watchdog model

Create a virtual hardware watchdog device. Once enabled (by a guest action),
the watchdog must be periodically polled by an agent inside the guest or else
the guest will be restarted. Choose a model for which your guest has drivers.

The model is the model of hardware watchdog to emulate. Use -watchdog

help to list available hardware models. Only one watchdog can be enabled for
a guest.

The following models may be available:

ib700 iBASE 700 is a very simple ISA watchdog with a single timer.

i6300esb Intel 6300ESB I/O controller hub is a much more featureful PCI-
based dual-timer watchdog.

diag288 A virtual watchdog for s390x backed by the diagnose 288 hypercall
(currently KVM only).

-watchdog-action action

The action controls what QEMU will do when the watchdog timer expires.
The default is reset (forcefully reset the guest). Other possible actions are:
shutdown (attempt to gracefully shutdown the guest), poweroff (forcefully
poweroff the guest), inject-nmi (inject a NMI into the guest), pause (pause
the guest), debug (print a debug message and continue), or none (do nothing).

Note that the shutdown action requires that the guest responds to ACPI sig-
nals, which it may not be able to do in the sort of situations where the watch-

Chapter 2: QEMU PC System emulator 50

dog would have expired, and thus -watchdog-action shutdown is not recom-
mended for production use.

Examples:

-watchdog i6300esb -watchdog-action pause

-watchdog ib700

-echr numeric_ascii_value

Change the escape character used for switching to the monitor when using mon-
itor and serial sharing. The default is 0x01 when using the -nographic option.
0x01 is equal to pressing Control-a. You can select a different character from
the ascii control keys where 1 through 26 map to Control-a through Control-
z. For instance you could use the either of the following to change the escape
character to Control-t.

-echr 0x14

-echr 20

-show-cursor

Show cursor.

-tb-size n

Set TB size.

-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]

-incoming rdma:host:port[,ipv4][,ipv6]

Prepare for incoming migration, listen on a given tcp port.

-incoming unix:socketpath

Prepare for incoming migration, listen on a given unix socket.

-incoming fd:fd

Accept incoming migration from a given filedescriptor.

-incoming exec:cmdline

Accept incoming migration as an output from specified external command.

-incoming defer

Wait for the URI to be specified via migrate incoming. The monitor can be
used to change settings (such as migration parameters) prior to issuing the
migrate incoming to allow the migration to begin.

-only-migratable

Only allow migratable devices. Devices will not be allowed to enter an unmi-
gratable state.

-nodefaults

Don’t create default devices. Normally, QEMU sets the default devices like
serial port, parallel port, virtual console, monitor device, VGA adapter, floppy
and CD-ROM drive and others. The -nodefaults option will disable all those
default devices.

-chroot dir

Immediately before starting guest execution, chroot to the specified directory.
Especially useful in combination with -runas. This option is not supported for
Windows hosts.

Chapter 2: QEMU PC System emulator 51

-runas user

Immediately before starting guest execution, drop root privileges, switching to
the specified user.

-prom-env variable=value

Set OpenBIOS nvram variable to given value (PPC, SPARC only).

-semihosting

Enable semihosting mode (ARM, M68K, Xtensa, MIPS, Nios II only).

-semihosting-config

[enable=on|off][,target=native|gdb|auto][,chardev=id][,arg=str[,...]]

Enable and configure semihosting (ARM, M68K, Xtensa, MIPS, Nios II only).

target=native|gdb|auto

Defines where the semihosting calls will be addressed, to QEMU
(native) or to GDB (gdb). The default is auto, which means gdb
during debug sessions and native otherwise.

chardev=str1

Send the output to a chardev backend output for native or auto
output when not in gdb

arg=str1,arg=str2,...

Allows the user to pass input arguments, and can be used mul-
tiple times to build up a list. The old-style -kernel/-append
method of passing a command line is still supported for back-
ward compatibility. If both the --semihosting-config arg and
the -kernel/-append are specified, the former is passed to semi-
hosting as it always takes precedence.

-old-param

Old param mode (ARM only).

-sandbox

arg[,obsolete=string][,elevateprivileges=string][,spawn=string][,resourcecontrol=string]

Enable Seccomp mode 2 system call filter. ’on’ will enable syscall filtering and
’off’ will disable it. The default is ’off’.

obsolete=string

Enable Obsolete system calls

elevateprivileges=string

Disable set*uid|gid system calls

spawn=string

Disable *fork and execve

resourcecontrol=string

Disable process affinity and schedular priority

-readconfig file

Read device configuration from file. This approach is useful when you want to
spawn QEMU process with many command line options but you don’t want to
exceed the command line character limit.

Chapter 2: QEMU PC System emulator 52

-writeconfig file

Write device configuration to file. The file can be either filename to save com-
mand line and device configuration into file or dash -) character to print the
output to stdout. This can be later used as input file for -readconfig option.

-no-user-config

The -no-user-config option makes QEMU not load any of the user-provided
config files on sysconfdir.

-trace-unassigned

Trace unassigned memory or i/o accesses to stderr.

-trace [[enable=]pattern][,events=file][,file=file]

Specify tracing options.

[enable=]pattern

Immediately enable events matching pattern (either event name
or a globbing pattern). This option is only available if QEMU
has been compiled with the simple, log or ftrace tracing backend.
To specify multiple events or patterns, specify the -trace option
multiple times.

Use -trace help to print a list of names of trace points.

events=file

Immediately enable events listed in file. The file must contain one
event name (as listed in the trace-events-all file) per line; glob-
bing patterns are accepted too. This option is only available if
QEMU has been compiled with the simple, log or ftrace tracing
backend.

file=file

Log output traces to file. This option is only available if QEMU
has been compiled with the simple tracing backend.

-enable-fips

Enable FIPS 140-2 compliance mode.

-msg timestamp[=on|off]

prepend a timestamp to each log message.(default:on)

-dump-vmstate file

Dump json-encoded vmstate information for current machine type to file in file

-enable-sync-profile

Enable synchronization profiling.

2.3.12 Generic object creation

-object typename[,prop1=value1,...]

Create a new object of type typename setting properties in the order they are
specified. Note that the ’id’ property must be set. These objects are placed in
the ’/objects’ path.

Chapter 2: QEMU PC System emulator 53

-object memory-backend-file,id=id,size=size,mem-

path=dir,share=on|off,discard-

data=on|off,merge=on|off,dump=on|off,prealloc=on|off,host-

nodes=host-

nodes,policy=default|preferred|bind|interleave,align=align

Creates a memory file backend object, which can be used to back
the guest RAM with huge pages.

The id parameter is a unique ID that will be used to reference this
memory region when configuring the -numa argument.

The size option provides the size of the memory region, and ac-
cepts common suffixes, eg 500M.

The mem-path provides the path to either a shared memory or huge
page filesystem mount.

The share boolean option determines whether the memory region
is marked as private to QEMU, or shared. The latter allows a
co-operating external process to access the QEMU memory region.

The share is also required for pvrdma devices due to limitations in
the RDMA API provided by Linux.

Setting share=on might affect the ability to configure NUMA
bindings for the memory backend under some circumstances, see
Documentation/vm/numa memory policy.txt on the Linux kernel
source tree for additional details.

Setting the discard-data boolean option to on indicates that file
contents can be destroyed when QEMU exits, to avoid unnecessarily
flushing data to the backing file. Note that discard-data is only
an optimization, and QEMU might not discard file contents if it
aborts unexpectedly or is terminated using SIGKILL.

The merge boolean option enables memory merge, also known as
MADV MERGEABLE, so that Kernel Samepage Merging will con-
sider the pages for memory deduplication.

Setting the dump boolean option to off excludes the memory from
core dumps. This feature is also known as MADV DONTDUMP.

The prealloc boolean option enables memory preallocation.

The host-nodes option binds the memory range to a list of NUMA
host nodes.

The policy option sets the NUMA policy to one of the following
values:

default default host policy

preferred

prefer the given host node list for allocation

bind restrict memory allocation to the given host node list

Chapter 2: QEMU PC System emulator 54

interleave

interleave memory allocations across the given host
node list

The align option specifies the base address alignment when QEMU
mmap(2) mem-path, and accepts common suffixes, eg 2M. Some
backend store specified by mem-path requires an alignment dif-
ferent than the default one used by QEMU, eg the device DAX
/dev/dax0.0 requires 2M alignment rather than 4K. In such cases,
users can specify the required alignment via this option.

The pmem option specifies whether the backing file specified by
mem-path is in host persistent memory that can be accessed using
the SNIA NVM programming model (e.g. Intel NVDIMM). If pmem
is set to ’on’, QEMU will take necessary operations to guarantee the
persistence of its own writes to mem-path (e.g. in vNVDIMM label
emulation and live migration). Also, we will map the backend-file
with MAP SYNC flag, which ensures the file metadata is in sync
for mem-path in case of host crash or a power failure. MAP SYNC
requires support from both the host kernel (since Linux kernel 4.15)
and the filesystem of mem-path mounted with DAX option.

-object memory-backend-

ram,id=id,merge=on|off,dump=on|off,share=on|off,prealloc=on|off,size=size,host-

nodes=host-nodes,policy=default|preferred|bind|interleave

Creates a memory backend object, which can be used to back the
guest RAM. Memory backend objects offer more control than the
-m option that is traditionally used to define guest RAM. Please
refer to memory-backend-file for a description of the options.

-object memory-backend-

memfd,id=id,merge=on|off,dump=on|off,share=on|off,prealloc=on|off,size=size,host-

nodes=host-

nodes,policy=default|preferred|bind|interleave,seal=on|off,hugetlb=on|off,hugetlbsize=size

Creates an anonymous memory file backend object, which allows
QEMU to share the memory with an external process (e.g. when
using vhost-user). The memory is allocated with memfd and op-
tional sealing. (Linux only)

The seal option creates a sealed-file, that will block further resizing
the memory (’on’ by default).

The hugetlb option specify the file to be created resides in the
hugetlbfs filesystem (since Linux 4.14). Used in conjunction with
the hugetlb option, the hugetlbsize option specify the hugetlb
page size on systems that support multiple hugetlb page sizes (it
must be a power of 2 value supported by the system).

In some versions of Linux, the hugetlb option is incompatible with
the seal option (requires at least Linux 4.16).

Please refer to memory-backend-file for a description of the other
options.

Chapter 2: QEMU PC System emulator 55

The share boolean option is on by default with memfd.

-object rng-random,id=id,filename=/dev/random

Creates a random number generator backend which obtains entropy
from a device on the host. The id parameter is a unique ID that
will be used to reference this entropy backend from the virtio-rng
device. The filename parameter specifies which file to obtain en-
tropy from and if omitted defaults to /dev/urandom.

-object rng-egd,id=id,chardev=chardevid

Creates a random number generator backend which obtains entropy
from an external daemon running on the host. The id parameter
is a unique ID that will be used to reference this entropy backend
from the virtio-rng device. The chardev parameter is the unique
ID of a character device backend that provides the connection to
the RNG daemon.

-object tls-creds-

anon,id=id,endpoint=endpoint,dir=/path/to/cred/dir,verify-

peer=on|off

Creates a TLS anonymous credentials object, which can be used to
provide TLS support on network backends. The id parameter is a
unique ID which network backends will use to access the credentials.
The endpoint is either server or client depending on whether
the QEMU network backend that uses the credentials will be acting
as a client or as a server. If verify-peer is enabled (the default)
then once the handshake is completed, the peer credentials will be
verified, though this is a no-op for anonymous credentials.

The dir parameter tells QEMU where to find the credential
files. For server endpoints, this directory may contain a file
dh-params.pem providing diffie-hellman parameters to use for
the TLS server. If the file is missing, QEMU will generate a
set of DH parameters at startup. This is a computationally
expensive operation that consumes random pool entropy, so it is
recommended that a persistent set of parameters be generated
upfront and saved.

-object tls-creds-

psk,id=id,endpoint=endpoint,dir=/path/to/keys/dir[,username=username]

Creates a TLS Pre-Shared Keys (PSK) credentials object, which
can be used to provide TLS support on network backends. The
id parameter is a unique ID which network backends will use to
access the credentials. The endpoint is either server or client

depending on whether the QEMU network backend that uses the
credentials will be acting as a client or as a server. For clients
only, username is the username which will be sent to the server. If
omitted it defaults to “qemu”.

Chapter 2: QEMU PC System emulator 56

The dir parameter tells QEMU where to find the keys file. It is
called “dir/keys.psk” and contains “username:key” pairs. This file
can most easily be created using the GnuTLS psktool program.

For server endpoints, dir may also contain a file dh-params.pem
providing diffie-hellman parameters to use for the TLS server. If
the file is missing, QEMU will generate a set of DH parameters at
startup. This is a computationally expensive operation that con-
sumes random pool entropy, so it is recommended that a persistent
set of parameters be generated up front and saved.

-object tls-creds-

x509,id=id,endpoint=endpoint,dir=/path/to/cred/dir,priority=priority,verify-

peer=on|off,passwordid=id

Creates a TLS anonymous credentials object, which can be used to
provide TLS support on network backends. The id parameter is a
unique ID which network backends will use to access the credentials.
The endpoint is either server or client depending on whether
the QEMU network backend that uses the credentials will be acting
as a client or as a server. If verify-peer is enabled (the default)
then once the handshake is completed, the peer credentials will be
verified. With x509 certificates, this implies that the clients must
be provided with valid client certificates too.

The dir parameter tells QEMU where to find the credential
files. For server endpoints, this directory may contain a file
dh-params.pem providing diffie-hellman parameters to use for
the TLS server. If the file is missing, QEMU will generate a
set of DH parameters at startup. This is a computationally
expensive operation that consumes random pool entropy, so it is
recommended that a persistent set of parameters be generated
upfront and saved.

For x509 certificate credentials the directory will contain further
files providing the x509 certificates. The certificates must be stored
in PEM format, in filenames ca-cert.pem, ca-crl.pem (optional),
server-cert.pem (only servers), server-key.pem (only servers), client-
cert.pem (only clients), and client-key.pem (only clients).

For the server-key.pem and client-key.pem files which contain sen-
sitive private keys, it is possible to use an encrypted version by
providing the passwordid parameter. This provides the ID of a
previously created secret object containing the password for de-
cryption.

The priority parameter allows to override the global default prior-
ity used by gnutls. This can be useful if the system administrator
needs to use a weaker set of crypto priorities for QEMU without po-
tentially forcing the weakness onto all applications. Or conversely
if one wants wants a stronger default for QEMU than for all other
applications, they can do this through this parameter. Its format

Chapter 2: QEMU PC System emulator 57

is a gnutls priority string as described at https://gnutls.org/

manual/html_node/Priority-Strings.html.

-object filter-

buffer,id=id,netdev=netdevid,interval=t[,queue=all|rx|tx][,status=on|off]

Interval t can’t be 0, this filter batches the packet delivery: all
packets arriving in a given interval on netdev netdevid are delayed
until the end of the interval. Interval is in microseconds. status

is optional that indicate whether the netfilter is on (enabled) or off
(disabled), the default status for netfilter will be ’on’.

queue all|rx|tx is an option that can be applied to any netfilter.

all: the filter is attached both to the receive and the transmit
queue of the netdev (default).

rx: the filter is attached to the receive queue of the netdev, where
it will receive packets sent to the netdev.

tx: the filter is attached to the transmit queue of the netdev, where
it will receive packets sent by the netdev.

-object filter-

mirror,id=id,netdev=netdevid,outdev=chardevid,queue=all|rx|tx[,vnet_

hdr_support]

filter-mirror on netdev netdevid,mirror net packet to
chardevchardevid, if it has the vnet hdr support flag, filter-mirror
will mirror packet with vnet hdr len.

-object filter-

redirector,id=id,netdev=netdevid,indev=chardevid,outdev=chardevid,queue=all|rx|tx[,vnet_

hdr_support]

filter-redirector on netdev netdevid,redirect filter’s net packet to
chardev chardevid,and redirect indev’s packet to filter.if it has the
vnet hdr support flag, filter-redirector will redirect packet with
vnet hdr len. Create a filter-redirector we need to differ outdev
id from indev id, id can not be the same. we can just use indev or
outdev, but at least one of indev or outdev need to be specified.

-object filter-

rewriter,id=id,netdev=netdevid,queue=all|rx|tx,[vnet_hdr_support]

Filter-rewriter is a part of COLO project.It will rewrite tcp packet
to secondary from primary to keep secondary tcp connection,and
rewrite tcp packet to primary from secondary make tcp packet can
be handled by client.if it has the vnet hdr support flag, we can
parse packet with vnet header.

usage: colo secondary: -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
-object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
-object filter-rewriter,id=rew0,netdev=hn0,queue=all

-object filter-dump,id=id,netdev=dev[,file=filename][,maxlen=len]

Dump the network traffic on netdev dev to the file specified by
filename. At most len bytes (64k by default) per packet are stored.

https://gnutls.org/manual/html_node/Priority-Strings.html
https://gnutls.org/manual/html_node/Priority-Strings.html

Chapter 2: QEMU PC System emulator 58

The file format is libpcap, so it can be analyzed with tools such as
tcpdump or Wireshark.

-object colo-compare,id=id,primary_in=chardevid,secondary_

in=chardevid,outdev=chardevid,iothread=id[,vnet_hdr_

support][,notify_dev=id]

Colo-compare gets packet from primary inchardevid and
secondary inchardevid, than compare primary packet with
secondary packet. If the packets are same, we will output primary
packet to outdevchardevid, else we will notify colo-frame do
checkpoint and send primary packet to outdevchardevid. In order
to improve efficiency, we need to put the task of comparison in
another thread. If it has the vnet hdr support flag, colo compare
will send/recv packet with vnet hdr len. If you want to use Xen
COLO, will need the notify dev to notify Xen colo-frame to do
checkpoint.

we must use it with the help of filter-mirror and filter-redirector.

KVM COLO

primary:

-netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown

-device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66

-chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait

-chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait

-chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait

-chardev socket,id=compare0-0,host=3.3.3.3,port=9001

-chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait

-chardev socket,id=compare_out0,host=3.3.3.3,port=9005

-object iothread,id=iothread1

-object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0

-object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out

-object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0

-object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0,iothread=iothread1

secondary:

-netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown

-device e1000,netdev=hn0,mac=52:a4:00:12:78:66

-chardev socket,id=red0,host=3.3.3.3,port=9003

-chardev socket,id=red1,host=3.3.3.3,port=9004

-object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0

-object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1

Xen COLO

primary:

Chapter 2: QEMU PC System emulator 59

-netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown

-device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66

-chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait

-chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait

-chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait

-chardev socket,id=compare0-0,host=3.3.3.3,port=9001

-chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait

-chardev socket,id=compare_out0,host=3.3.3.3,port=9005

-chardev socket,id=notify_way,host=3.3.3.3,port=9009,server,nowait

-object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0

-object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out

-object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0

-object iothread,id=iothread1

-object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0,notify_dev=nofity_way,iothread=iothread1

secondary:

-netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown

-device e1000,netdev=hn0,mac=52:a4:00:12:78:66

-chardev socket,id=red0,host=3.3.3.3,port=9003

-chardev socket,id=red1,host=3.3.3.3,port=9004

-object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0

-object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1

If you want to know the detail of above command line, you can
read the colo-compare git log.

-object cryptodev-backend-builtin,id=id[,queues=queues]

Creates a cryptodev backend which executes crypto opreation
from the QEMU cipher APIS. The id parameter is a unique ID
that will be used to reference this cryptodev backend from the
virtio-crypto device. The queues parameter is optional, which
specify the queue number of cryptodev backend, the default of
queues is 1.

qemu-system-x86_64 \

[...] \

-object cryptodev-backend-builtin,id=cryptodev0 \

-device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \

[...]

-object

cryptodev-vhost-user,id=id,chardev=chardevid[,queues=queues]

Creates a vhost-user cryptodev backend, backed by a chardev
chardevid. The id parameter is a unique ID that will be used to
reference this cryptodev backend from the virtio-crypto device.
The chardev should be a unix domain socket backed one. The
vhost-user uses a specifically defined protocol to pass vhost ioctl
replacement messages to an application on the other end of the

Chapter 2: QEMU PC System emulator 60

socket. The queues parameter is optional, which specify the queue
number of cryptodev backend for multiqueue vhost-user, the
default of queues is 1.

qemu-system-x86_64 \

[...] \

-chardev socket,id=chardev0,path=/path/to/socket \

-object cryptodev-vhost-user,id=cryptodev0,chardev=chardev0 \

-device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \

[...]

-object

secret,id=id,data=string,format=raw|base64[,keyid=secretid,iv=string]

-object

secret,id=id,file=filename,format=raw|base64[,keyid=secretid,iv=string]

Defines a secret to store a password, encryption key, or some other
sensitive data. The sensitive data can either be passed directly via
the data parameter, or indirectly via the file parameter. Using the
data parameter is insecure unless the sensitive data is encrypted.

The sensitive data can be provided in raw format (the default), or
base64. When encoded as JSON, the raw format only supports
valid UTF-8 characters, so base64 is recommended for sending bi-
nary data. QEMU will convert from which ever format is provided
to the format it needs internally. eg, an RBD password can be pro-
vided in raw format, even though it will be base64 encoded when
passed onto the RBD sever.

For added protection, it is possible to encrypt the data associated
with a secret using the AES-256-CBC cipher. Use of encryption is
indicated by providing the keyid and iv parameters. The keyid pa-
rameter provides the ID of a previously defined secret that contains
the AES-256 decryption key. This key should be 32-bytes long and
be base64 encoded. The iv parameter provides the random ini-
tialization vector used for encryption of this particular secret and
should be a base64 encrypted string of the 16-byte IV.

The simplest (insecure) usage is to provide the secret inline

$QEMU -object secret,id=sec0,data=letmein,format=raw

The simplest secure usage is to provide the secret via a file

printf "letmein" > mypasswd.txt # $QEMU -object
secret,id=sec0,file=mypasswd.txt,format=raw

For greater security, AES-256-CBC should be used. To illustrate
usage, consider the openssl command line tool which can encrypt
the data. Note that when encrypting, the plaintext must be padded
to the cipher block size (32 bytes) using the standard PKCS#5/6
compatible padding algorithm.

Chapter 2: QEMU PC System emulator 61

First a master key needs to be created in base64 encoding:

openssl rand -base64 32 > key.b64

KEY=$(base64 -d key.b64 | hexdump -v -e ’/1 "%02X"’)

Each secret to be encrypted needs to have a random initialization
vector generated. These do not need to be kept secret

openssl rand -base64 16 > iv.b64

IV=$(base64 -d iv.b64 | hexdump -v -e ’/1 "%02X"’)

The secret to be defined can now be encrypted, in this case we’re
telling openssl to base64 encode the result, but it could be left as
raw bytes if desired.

SECRET=$(printf "letmein" |

openssl enc -aes-256-cbc -a -K $KEY -iv $IV)

When launching QEMU, create a master secret pointing to key.b64
and specify that to be used to decrypt the user password. Pass the
contents of iv.b64 to the second secret

$QEMU \

-object secret,id=secmaster0,format=base64,file=key.b64 \

-object secret,id=sec0,keyid=secmaster0,format=base64,\

data=$SECRET,iv=$(<iv.b64)

-object sev-guest,id=id,cbitpos=cbitpos,reduced-phys-

bits=val,[sev-device=string,policy=policy,handle=handle,dh-cert-

file=file,session-file=file]

Create a Secure Encrypted Virtualization (SEV) guest object,
which can be used to provide the guest memory encryption
support on AMD processors.

When memory encryption is enabled, one of the physical address
bit (aka the C-bit) is utilized to mark if a memory page is pro-
tected. The cbitpos is used to provide the C-bit position. The
C-bit position is Host family dependent hence user must provide
this value. On EPYC, the value should be 47.

When memory encryption is enabled, we loose certain bits in phys-
ical address space. The reduced-phys-bits is used to provide the
number of bits we loose in physical address space. Similar to C-bit,
the value is Host family dependent. On EPYC, the value should
be 5.

The sev-device provides the device file to use for communicating
with the SEV firmware running inside AMD Secure Processor. The
default device is ’/dev/sev’. If hardware supports memory encryp-
tion then /dev/sev devices are created by CCP driver.

The policy provides the guest policy to be enforced by the
SEV firmware and restrict what configuration and operational
commands can be performed on this guest by the hypervisor. The
policy should be provided by the guest owner and is bound to the
guest and cannot be changed throughout the lifetime of the guest.
The default is 0.

Chapter 2: QEMU PC System emulator 62

If guest policy allows sharing the key with another SEV guest
then handle can be use to provide handle of the guest from which
to share the key.

The dh-cert-file and session-file provides the guest owner’s
Public Diffie-Hillman key defined in SEV spec. The PDH and ses-
sion parameters are used for establishing a cryptographic session
with the guest owner to negotiate keys used for attestation. The
file must be encoded in base64.

e.g to launch a SEV guest

$QEMU \

......

-object sev-guest,id=sev0,cbitpos=47,reduced-phys-bits=5 \

-machine ...,memory-encryption=sev0

.....

-object authz-simple,id=id,identity=string

Create an authorization object that will control access to network
services.

The identity parameter is identifies the user and its format de-
pends on the network service that authorization object is associated
with. For authorizing based on TLS x509 certificates, the identity
must be the x509 distinguished name. Note that care must be taken
to escape any commas in the distinguished name.

An example authorization object to validate a x509 distinguished
name would look like:

$QEMU \

...

-object ’authz-simple,id=auth0,identity=CN=laptop.example.com,,O=Example Org,,L=London,,ST=London,,C=GB’ \

...

Note the use of quotes due to the x509 distinguished name contain-
ing whitespace, and escaping of ’,’.

-object authz-listfile,id=id,filename=path,refresh=yes|no

Create an authorization object that will control access to network
services.

The filename parameter is the fully qualified path to a file con-
taining the access control list rules in JSON format.

An example set of rules that match against SASL usernames might
look like:

{

"rules": [

{ "match": "fred", "policy": "allow", "format": "exact" },

{ "match": "bob", "policy": "allow", "format": "exact" },

{ "match": "danb", "policy": "deny", "format": "glob" },

{ "match": "dan*", "policy": "allow", "format": "exact" },

Chapter 2: QEMU PC System emulator 63

],

"policy": "deny"

}

When checking access the object will iterate over all the rules and
the first rule to match will have its policy value returned as the
result. If no rules match, then the default policy value is returned.

The rules can either be an exact string match, or they can use the
simple UNIX glob pattern matching to allow wildcards to be used.

If refresh is set to true the file will be monitored and automatically
reloaded whenever its content changes.

As with the authz-simple object, the format of the identity strings
being matched depends on the network service, but is usually a TLS
x509 distinguished name, or a SASL username.

An example authorization object to validate a SASL username
would look like:

$QEMU \

...

-object authz-simple,id=auth0,filename=/etc/qemu/vnc-sasl.acl,refresh=yes

...

-object authz-pam,id=id,service=string

Create an authorization object that will control access to network
services.

The service parameter provides the name of a PAM service to use
for authorization. It requires that a file /etc/pam.d/service exist
to provide the configuration for the account subsystem.

An example authorization object to validate a TLS x509 distin-
guished name would look like:

$QEMU \

...

-object authz-pam,id=auth0,service=qemu-vnc

...

There would then be a corresponding config file for PAM at
/etc/pam.d/qemu-vnc that contains:

account requisite pam_listfile.so item=user sense=allow \

file=/etc/qemu/vnc.allow

Finally the /etc/qemu/vnc.allow file would contain the list of
x509 distingished names that are permitted access

CN=laptop.example.com,O=Example Home,L=London,ST=London,C=GB

2.3.13 Device URL Syntax

In addition to using normal file images for the emulated storage devices, QEMU can also
use networked resources such as iSCSI devices. These are specified using a special URL
syntax.

Chapter 2: QEMU PC System emulator 64

iSCSI iSCSI support allows QEMU to access iSCSI resources directly and use as im-
ages for the guest storage. Both disk and cdrom images are supported.

Syntax for specifying iSCSI LUNs is “iscsi://<target-ip>[:<port>]/<target-
iqn>/<lun>”

By default qemu will use the iSCSI initiator-name ’iqn.2008-11.org.linux-
kvm[:<name>]’ but this can also be set from the command line or a
configuration file.

Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to
detect stalled requests and force a reestablishment of the session. The timeout
is specified in seconds. The default is 0 which means no timeout. Libiscsi 1.15.0
or greater is required for this feature.

Example (without authentication):

qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \

-cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \

-drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1

Example (CHAP username/password via URL):

qemu-system-i386 -drive file=iscsi://user%password@192.0.2.1/iqn.2001-04.com.example/1

Example (CHAP username/password via environment variables):

LIBISCSI_CHAP_USERNAME="user" \

LIBISCSI_CHAP_PASSWORD="password" \

qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1

NBD QEMU supports NBD (Network Block Devices) both using TCP protocol as
well as Unix Domain Sockets.

Syntax for specifying a NBD device using TCP “nbd:<server-
ip>:<port>[:exportname=<export>]”

Syntax for specifying a NBD device using Unix Domain Sockets
“nbd:unix:<domain-socket>[:exportname=<export>]”

Example for TCP

qemu-system-i386 --drive file=nbd:192.0.2.1:30000

Example for Unix Domain Sockets

qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket

SSH QEMU supports SSH (Secure Shell) access to remote disks.

Examples:

qemu-system-i386 -drive file=ssh://user@host/path/to/disk.img

qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img

Currently authentication must be done using ssh-agent. Other authentication
methods may be supported in future.

Sheepdog Sheepdog is a distributed storage system for QEMU. QEMU supports using
either local sheepdog devices or remote networked devices.

Syntax for specifying a sheepdog device

sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]

Chapter 2: QEMU PC System emulator 65

Example

qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine

See also https://sheepdog.github.io/sheepdog/.

GlusterFS

GlusterFS is a user space distributed file system. QEMU supports the use
of GlusterFS volumes for hosting VM disk images using TCP, Unix Domain
Sockets and RDMA transport protocols.

Syntax for specifying a VM disk image on GlusterFS volume is

URI:

gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]

JSON:

’json:{"driver":"qcow2","file":{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",

"server":[{"type":"tcp","host":"...","port":"..."},

{"type":"unix","socket":"..."}]}}’

Example

URI:

qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img,

file.debug=9,file.logfile=/var/log/qemu-gluster.log

JSON:

qemu-system-x86_64 ’json:{"driver":"qcow2",

"file":{"driver":"gluster",

"volume":"testvol","path":"a.img",

"debug":9,"logfile":"/var/log/qemu-gluster.log",

"server":[{"type":"tcp","host":"1.2.3.4","port":24007},

{"type":"unix","socket":"/var/run/glusterd.socket"}]}}’

qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,

file.debug=9,file.logfile=/var/log/qemu-gluster.log,

file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,

file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket

See also http://www.gluster.org.

HTTP/HTTPS/FTP/FTPS

QEMU supports read-only access to files accessed over http(s) and ftp(s).

Syntax using a single filename:

<protocol>://[<username>[:<password>]@]<host>/<path>

where:

protocol ’http’, ’https’, ’ftp’, or ’ftps’.

username Optional username for authentication to the remote server.

password Optional password for authentication to the remote server.

host Address of the remote server.

https://sheepdog.github.io/sheepdog/
http://www.gluster.org

Chapter 2: QEMU PC System emulator 66

path Path on the remote server, including any query string.

The following options are also supported:

url The full URL when passing options to the driver explicitly.

readahead

The amount of data to read ahead with each range request to the
remote server. This value may optionally have the suffix ’T’, ’G’,
’M’, ’K’, ’k’ or ’b’. If it does not have a suffix, it will be assumed to
be in bytes. The value must be a multiple of 512 bytes. It defaults
to 256k.

sslverify

Whether to verify the remote server’s certificate when connecting
over SSL. It can have the value ’on’ or ’off’. It defaults to ’on’.

cookie Send this cookie (it can also be a list of cookies separated by ’;’)
with each outgoing request. Only supported when using protocols
such as HTTP which support cookies, otherwise ignored.

timeout Set the timeout in seconds of the CURL connection. This timeout
is the time that CURL waits for a response from the remote server
to get the size of the image to be downloaded. If not set, the default
timeout of 5 seconds is used.

Note that when passing options to qemu explicitly, driver is the value of <pro-
tocol>.

Example: boot from a remote Fedora 20 live ISO image

qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly

qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly

Example: boot from a remote Fedora 20 cloud image using a local overlay for
writes, copy-on-read, and a readahead of 64k

qemu-img create -f qcow2 -o backing_file=’json:{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"}’ /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2

qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on

Example: boot from an image stored on a VMware vSphere server with a self-
signed certificate using a local overlay for writes, a readahead of 64k and a
timeout of 10 seconds.

qemu-img create -f qcow2 -o backing_file=’json:{"file.driver":"https",, "file.url":"https://user:password@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10}’ /tmp/test.qcow2

qemu-system-x86_64 -drive file=/tmp/test.qcow2

2.4 Keys in the graphical frontends

During the graphical emulation, you can use special key combinations to change modes.
The default key mappings are shown below, but if you use -alt-grab then the modifier is
Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use -ctrl-grab then the modifier is the right
Ctrl key (instead of Ctrl-Alt):

Chapter 2: QEMU PC System emulator 67

Ctrl-Alt-f

Toggle full screen

Ctrl-Alt-+

Enlarge the screen

Ctrl-Alt--

Shrink the screen

Ctrl-Alt-u

Restore the screen’s un-scaled dimensions

Ctrl-Alt-n

Switch to virtual console ’n’. Standard console mappings are:

1 Target system display

2 Monitor

3 Serial port

Ctrl-Alt Toggle mouse and keyboard grab.

In the virtual consoles, you can use Ctrl-Up, Ctrl-Down, Ctrl-PageUp and Ctrl-PageDown

to move in the back log.

2.5 Keys in the character backend multiplexer

During emulation, if you are using a character backend multiplexer (which is the default
if you are using -nographic) then several commands are available via an escape sequence.
These key sequences all start with an escape character, which is Ctrl-a by default, but can
be changed with -echr. The list below assumes you’re using the default.

Ctrl-a h Print this help

Ctrl-a x Exit emulator

Ctrl-a s Save disk data back to file (if -snapshot)

Ctrl-a t Toggle console timestamps

Ctrl-a b Send break (magic sysrq in Linux)

Ctrl-a c Rotate between the frontends connected to the multiplexer (usually this
switches between the monitor and the console)

Ctrl-a Ctrl-a

Send the escape character to the frontend

2.6 QEMU Monitor

The QEMU monitor is used to give complex commands to the QEMU emulator. You can
use it to:

− Remove or insert removable media images (such as CD-ROM or floppies).

− Freeze/unfreeze the Virtual Machine (VM) and save or restore its state from a disk file.

− Inspect the VM state without an external debugger.

Chapter 2: QEMU PC System emulator 68

2.6.1 Commands

The following commands are available:

help or ? [cmd]

Show the help for all commands or just for command cmd.

commit Commit changes to the disk images (if -snapshot is used) or backing files. If the
backing file is smaller than the snapshot, then the backing file will be resized to
be the same size as the snapshot. If the snapshot is smaller than the backing
file, the backing file will not be truncated. If you want the backing file to match
the size of the smaller snapshot, you can safely truncate it yourself once the
commit operation successfully completes.

q or quit Quit the emulator.

exit_preconfig

This command makes QEMU exit the preconfig state and proceed with VM
initialization using configuration data provided on the command line and via
the QMP monitor during the preconfig state. The command is only available
during the preconfig state (i.e. when the –preconfig command line option was
in use).

block_resize

Resize a block image while a guest is running. Usually requires guest action to
see the updated size. Resize to a lower size is supported, but should be used
with extreme caution. Note that this command only resizes image files, it can
not resize block devices like LVM volumes.

block_stream

Copy data from a backing file into a block device.

block_job_set_speed

Set maximum speed for a background block operation.

block_job_cancel

Stop an active background block operation (streaming, mirroring).

block_job_complete

Manually trigger completion of an active background block operation. For
mirroring, this will switch the device to the destination path.

block_job_pause

Pause an active block streaming operation.

block_job_resume

Resume a paused block streaming operation.

eject [-f] device

Eject a removable medium (use -f to force it).

drive_del device

Remove host block device. The result is that guest generated IO is no longer
submitted against the host device underlying the disk. Once a drive has been
deleted, the QEMU Block layer returns -EIO which results in IO errors in the

Chapter 2: QEMU PC System emulator 69

guest for applications that are reading/writing to the device. These errors
are always reported to the guest, regardless of the drive’s error actions (drive
options rerror, werror).

change device setting

Change the configuration of a device.

change diskdevice filename [format [read-only-mode]]

Change the medium for a removable disk device to point to
filename. eg

(qemu) change ide1-cd0 /path/to/some.iso

format is optional.

read-only-mode may be used to change the read-only status of the
device. It accepts the following values:

retain Retains the current status; this is the default.

read-only Makes the device read-only.

read-write Makes the device writable.

change vnc display,options

Change the configuration of the VNC server. The valid syntax for
display and options are described at Section 2.3 [sec invocation],
page 3. eg

(qemu) change vnc localhost:1

change vnc password [password]

Change the password associated with the VNC server. If the new
password is not supplied, the monitor will prompt for it to be en-
tered. VNC passwords are only significant up to 8 letters. eg

(qemu) change vnc password

Password: ********

screendump filename

Save screen into PPM image filename.

logfile filename

Output logs to filename.

trace-event

changes status of a trace event

trace-file on|off|flush

Open, close, or flush the trace file. If no argument is given, the status of the
trace file is displayed.

log item1[,...]

Activate logging of the specified items.

savevm tag

Create a snapshot of the whole virtual machine. If tag is provided, it is used
as human readable identifier. If there is already a snapshot with the same tag,
it is replaced. More info at Section 2.8.3 [vm snapshots], page 88.

Chapter 2: QEMU PC System emulator 70

Since 4.0, savevm stopped allowing the snapshot id to be set, accepting only
tag as parameter.

loadvm tag

Set the whole virtual machine to the snapshot identified by the tag tag.

Since 4.0, loadvm stopped accepting snapshot id as parameter.

delvm tag Delete the snapshot identified by tag.

Since 4.0, delvm stopped deleting snapshots by snapshot id, accepting only tag
as parameter.

singlestep [off]

Run the emulation in single step mode. If called with option off, the emulation
returns to normal mode.

stop Stop emulation.

c or cont Resume emulation.

system_wakeup

Wakeup guest from suspend.

gdbserver [port]

Start gdbserver session (default port=1234)

x/fmt addr

Virtual memory dump starting at addr.

xp /fmt addr

Physical memory dump starting at addr.

fmt is a format which tells the command how to format the data. Its syntax is:
/{count}{format}{size}

count is the number of items to be dumped.

format can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
c (char) or i (asm instruction).

size can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86, h
or w can be specified with the i format to respectively select 16 or
32 bit code instruction size.

Examples:

• Dump 10 instructions at the current instruction pointer:

(qemu) x/10i $eip

0x90107063: ret

0x90107064: sti

0x90107065: lea 0x0(%esi,1),%esi

0x90107069: lea 0x0(%edi,1),%edi

0x90107070: ret

0x90107071: jmp 0x90107080

0x90107073: nop

0x90107074: nop

Chapter 2: QEMU PC System emulator 71

0x90107075: nop

0x90107076: nop

• Dump 80 16 bit values at the start of the video memory.
(qemu) xp/80hx 0xb8000

0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42

0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41

0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72

0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73

0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20

0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720

0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720

0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720

0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720

0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720

gpa2hva addr

Print the host virtual address at which the guest’s physical address addr is
mapped.

gpa2hpa addr

Print the host physical address at which the guest’s physical address addr is
mapped.

gva2gpa addr

Print the guest physical address at which the guest’s virtual address addr is
mapped based on the mapping for the current CPU.

p or print/fmt expr

Print expression value. Only the format part of fmt is used.

i/fmt addr [.index]

Read I/O port.

o/fmt addr val

Write to I/O port.

sendkey keys

Send keys to the guest. keys could be the name of the key or the raw value in
hexadecimal format. Use - to press several keys simultaneously. Example:

sendkey ctrl-alt-f1

This command is useful to send keys that your graphical user interface intercepts
at low level, such as ctrl-alt-f1 in X Window.

sync-profile [on|off|reset]

Enable, disable or reset synchronization profiling. With no arguments, prints
whether profiling is on or off.

system_reset

Reset the system.

system_powerdown

Power down the system (if supported).

sum addr size

Compute the checksum of a memory region.

Chapter 2: QEMU PC System emulator 72

device_add config

Add device.

device_del id

Remove device id. id may be a short ID or a QOM object path.

cpu index Set the default CPU.

mouse_move dx dy [dz]

Move the active mouse to the specified coordinates dx dy with optional scroll
axis dz.

mouse_button val

Change the active mouse button state val (1=L, 2=M, 4=R).

mouse_set index

Set which mouse device receives events at given index, index can be obtained
with

info mice

wavcapture filename [frequency [bits [channels]]]

Capture audio into filename. Using sample rate frequency bits per sample bits
and number of channels channels.

Defaults:

− Sample rate = 44100 Hz - CD quality

− Bits = 16

− Number of channels = 2 - Stereo

stopcapture index

Stop capture with a given index, index can be obtained with

info capture

memsave addr size file

save to disk virtual memory dump starting at addr of size size.

pmemsave addr size file

save to disk physical memory dump starting at addr of size size.

boot_set bootdevicelist

Define new values for the boot device list. Those values will override the values
specified on the command line through the -boot option.

The values that can be specified here depend on the machine type, but are the
same that can be specified in the -boot command line option.

nmi cpu Inject an NMI on the default CPU (x86/s390) or all CPUs (ppc64).

ringbuf_write device data

Write data to ring buffer character device device. data must be a UTF-8 string.

ringbuf_read device

Read and print up to size bytes from ring buffer character device device. Certain
non-printable characters are printed \uXXXX, where XXXX is the character
code in hexadecimal. Character \ is printed \\. Bug: can screw up when the

Chapter 2: QEMU PC System emulator 73

buffer contains invalid UTF-8 sequences, NUL characters, after the ring buffer
lost data, and when reading stops because the size limit is reached.

announce_self

Trigger a round of GARP/RARP broadcasts; this is useful for explicitly updat-
ing the network infrastructure after a reconfiguration or some forms of migra-
tion. The timings of the round are set by the migration announce parameters.
An optional comma separated interfaces list restricts the announce to the named
set of interfaces. An optional id can be used to start a separate announce timer
and to change the parameters of it later.

migrate [-d] [-b] [-i] uri

Migrate to uri (using -d to not wait for completion). -b for migration with
full copy of disk -i for migration with incremental copy of disk (base image is
shared)

migrate_cancel

Cancel the current VM migration.

migrate_continue state

Continue migration from the paused state state

migrate_incoming uri

Continue an incoming migration using the uri (that has the same syntax as the
-incoming option).

migrate_recover uri

Continue a paused incoming postcopy migration using the uri.

migrate_pause

Pause an ongoing migration. Currently it only supports postcopy.

migrate_set_cache_size value

Set cache size to value (in bytes) for xbzrle migrations.

migrate_set_speed value

Set maximum speed to value (in bytes) for migrations.

migrate_set_downtime second

Set maximum tolerated downtime (in seconds) for migration.

migrate_set_capability capability state

Enable/Disable the usage of a capability capability for migration.

migrate_set_parameter parameter value

Set the parameter parameter for migration.

migrate_start_postcopy

Switch in-progress migration to postcopy mode. Ignored after the end of mi-
gration (or once already in postcopy).

x_colo_lost_heartbeat

Tell COLO that heartbeat is lost, a failover or takeover is needed.

Chapter 2: QEMU PC System emulator 74

client_migrate_info protocol hostname port tls-port cert-subject

Set migration information for remote display. This makes the server ask the
client to automatically reconnect using the new parameters once migration fin-
ished successfully. Only implemented for SPICE.

dump-guest-memory [-p] filename begin length

dump-guest-memory [-z|-l|-s|-w] filename

Dump guest memory to protocol. The file can be processed with crash or
gdb. Without -z|-l|-s|-w, the dump format is ELF. -p: do paging to get
guest’s memory mapping. -z: dump in kdump-compressed format, with zlib
compression. -l: dump in kdump-compressed format, with lzo compression. -s:
dump in kdump-compressed format, with snappy compression. -w: dump in
Windows crashdump format (can be used instead of ELF-dump converting),
for Windows x64 guests with vmcoreinfo driver only filename: dump file name.
begin: the starting physical address. It’s optional, and should be specified
together with length. length: the memory size, in bytes. It’s optional, and
should be specified together with begin.

dump-skeys filename

Save guest storage keys to a file.

migration_mode mode

Enables or disables migration mode.

snapshot_blkdev

Snapshot device, using snapshot file as target if provided

snapshot_blkdev_internal

Take an internal snapshot on device if it support

snapshot_delete_blkdev_internal

Delete an internal snapshot on device if it support

drive_mirror

Start mirroring a block device’s writes to a new destination, using the specified
target.

drive_backup

Start a point-in-time copy of a block device to a specificed target.

drive_add

Add drive to PCI storage controller.

pcie_aer_inject_error

Inject PCIe AER error

netdev_add

Add host network device.

netdev_del

Remove host network device.

object_add

Create QOM object.

Chapter 2: QEMU PC System emulator 75

object_del

Destroy QOM object.

hostfwd_add

Redirect TCP or UDP connections from host to guest (requires -net user).

hostfwd_remove

Remove host-to-guest TCP or UDP redirection.

balloon value

Request VM to change its memory allocation to value (in MB).

set_link name [on|off]

Switch link name on (i.e. up) or off (i.e. down).

watchdog_action

Change watchdog action.

acl_show aclname

List all the matching rules in the access control list, and the default pol-
icy. There are currently two named access control lists, vnc.x509dname and
vnc.username matching on the x509 client certificate distinguished name, and
SASL username respectively.

acl_policy aclname allow|deny

Set the default access control list policy, used in the event that none of the
explicit rules match. The default policy at startup is always deny.

acl_add aclname match allow|deny [index]

Add a match rule to the access control list, allowing or denying access. The
match will normally be an exact username or x509 distinguished name, but
can optionally include wildcard globs. eg *@EXAMPLE.COM to allow all users in
the EXAMPLE.COM kerberos realm. The match will normally be appended to the
end of the ACL, but can be inserted earlier in the list if the optional index
parameter is supplied.

acl_remove aclname match

Remove the specified match rule from the access control list.

acl_reset aclname

Remove all matches from the access control list, and set the default policy back
to deny.

nbd_server_start host:port

Start an NBD server on the given host and/or port. If the -a option is in-
cluded, all of the virtual machine’s block devices that have an inserted media
on them are automatically exported; in this case, the -w option makes the
devices writable too.

nbd_server_add device [name]

Export a block device through QEMU’s NBD server, which must be started
beforehand with nbd_server_start. The -w option makes the exported device
writable too. The export name is controlled by name, defaulting to device.

Chapter 2: QEMU PC System emulator 76

nbd_server_remove [-f] name

Stop exporting a block device through QEMU’s NBD server, which was previ-
ously started with nbd_server_add. The -f option forces the server to drop
the export immediately even if clients are connected; otherwise the command
fails unless there are no clients.

nbd_server_stop

Stop the QEMU embedded NBD server.

mce cpu bank status mcgstatus addr misc

Inject an MCE on the given CPU (x86 only).

getfd fdname

If a file descriptor is passed alongside this command using the SCM RIGHTS
mechanism on unix sockets, it is stored using the name fdname for later use by
other monitor commands.

closefd fdname

Close the file descriptor previously assigned to fdname using the getfd com-
mand. This is only needed if the file descriptor was never used by another
monitor command.

block_passwd device password

Set the encrypted device device password to password

This command is now obsolete and will always return an error since 2.10

block_set_io_throttle device bps bps_rd bps_wr iops iops_rd iops_wr

Change I/O throttle limits for a block drive to bps bps rd bps wr iops iops rd
iops wr. device can be a block device name, a qdev ID or a QOM path.

set_password [vnc | spice] password [action-if-connected]

Change spice/vnc password. Use zero to make the password stay valid forever.
action-if-connected specifies what should happen in case a connection is estab-
lished: fail makes the password change fail. disconnect changes the password
and disconnects the client. keep changes the password and keeps the connection
up. keep is the default.

expire_password [vnc | spice] expire-time

Specify when a password for spice/vnc becomes invalid. expire-time accepts:

now Invalidate password instantly.

never Password stays valid forever.

+nsec Password stays valid for nsec seconds starting now.

nsec Password is invalidated at the given time. nsec are the seconds
passed since 1970, i.e. unix epoch.

chardev-add args

chardev-add accepts the same parameters as the -chardev command line switch.

chardev-change args

chardev-change accepts existing chardev id and then the same arguments as
the -chardev command line switch (except for "id").

Chapter 2: QEMU PC System emulator 77

chardev-remove id

Removes the chardev id.

chardev-send-break id

Send a break on the chardev id.

qemu-io device command

Executes a qemu-io command on the given block device.

cpu-add id

Add CPU with id id. This command is deprecated, please +use device_add

instead. For details, refer to ’docs/cpu-hotplug.rst’.

qom-list [path]

Print QOM properties of object at location path

qom-set path property value

Set QOM property property of object at location path to value value

info subcommand

Show various information about the system state.

info version

Show the version of QEMU.

info network

Show the network state.

info chardev

Show the character devices.

info block

Show info of one block device or all block devices.

info blockstats

Show block device statistics.

info block-jobs

Show progress of ongoing block device operations.

info registers

Show the cpu registers.

info lapic

Show local APIC state

info ioapic

Show io APIC state

info cpus Show infos for each CPU.

info history

Show the command line history.

info irq Show the interrupts statistics (if available).

info pic Show PIC state.

Chapter 2: QEMU PC System emulator 78

info rdma Show RDMA state.

info pci Show PCI information.

info tlb Show virtual to physical memory mappings.

info mem Show the active virtual memory mappings.

info mtree

Show memory tree.

info jit Show dynamic compiler info.

info opcount

Show dynamic compiler opcode counters

info sync-profile [-m|-n] [max]

Show synchronization profiling info, up tomax entries (default: 10),
sorted by total wait time. -m: sort by mean wait time -n: do not
coalesce objects with the same call site When different objects that
share the same call site are coalesced, the "Object" field shows—
enclosed in brackets—the number of objects being coalesced.

info kvm Show KVM information.

info numa Show NUMA information.

info usb Show guest USB devices.

info usbhost

Show host USB devices.

info profile

Show profiling information.

info capture

Show capture information.

info snapshots

Show the currently saved VM snapshots.

info status

Show the current VM status (running|paused).

info mice Show which guest mouse is receiving events.

info vnc Show the vnc server status.

info spice

Show the spice server status.

info name Show the current VM name.

info uuid Show the current VM UUID.

info cpustats

Show CPU statistics.

info usernet

Show user network stack connection states.

Chapter 2: QEMU PC System emulator 79

info migrate

Show migration status.

info migrate_capabilities

Show current migration capabilities.

info migrate_parameters

Show current migration parameters.

info migrate_cache_size

Show current migration xbzrle cache size.

info balloon

Show balloon information.

info qtree

Show device tree.

info qdm Show qdev device model list.

info qom-tree

Show QOM composition tree.

info roms Show roms.

info trace-events

Show available trace-events & their state.

info tpm Show the TPM device.

info memdev

Show memory backends

info memory-devices

Show memory devices.

info iothreads

Show iothread’s identifiers.

info rocker name

Show rocker switch.

info rocker-ports name-ports

Show rocker ports.

info rocker-of-dpa-flows name [tbl_id]

Show rocker OF-DPA flow tables.

info rocker-of-dpa-groups name [type]

Show rocker OF-DPA groups.

info skeys address

Display the value of a storage key (s390 only)

info cmma address

Display the values of the CMMA storage attributes for a range of
pages (s390 only)

Chapter 2: QEMU PC System emulator 80

info dump Display the latest dump status.

info ramblock

Dump all the ramblocks of the system.

info hotpluggable-cpus

Show information about hotpluggable CPUs

info vm-generation-id

Show Virtual Machine Generation ID

info memory_size_summary

Display the amount of initially allocated and present hotpluggable
(if enabled) memory in bytes.

info sev Show SEV information.

2.6.2 Integer expressions

The monitor understands integers expressions for every integer argument. You can use
register names to get the value of specifics CPU registers by prefixing them with $.

2.7 CPU models

QEMU / KVM CPU model configuration

QEMU / KVM virtualization supports two ways to configure CPU models

Host passthrough

This passes the host CPU model features, model, stepping, exactly to the guest.
Note that KVM may filter out some host CPU model features if they cannot
be supported with virtualization. Live migration is unsafe when this mode is
used as libvirt / QEMU cannot guarantee a stable CPU is exposed to the guest
across hosts. This is the recommended CPU to use, provided live migration is
not required.

Named model

QEMU comes with a number of predefined named CPU models, that typically
refer to specific generations of hardware released by Intel and AMD. These
allow the guest VMs to have a degree of isolation from the host CPU, allowing
greater flexibility in live migrating between hosts with differing hardware.

In both cases, it is possible to optionally add or remove individual CPU features, to alter
what is presented to the guest by default.

Libvirt supports a third way to configure CPU models known as "Host model". This uses
the QEMU "Named model" feature, automatically picking a CPU model that is similar
the host CPU, and then adding extra features to approximate the host model as closely
as possible. This does not guarantee the CPU family, stepping, etc will precisely match
the host CPU, as they would with "Host passthrough", but gives much of the benefit of
passthrough, while making live migration safe.

Chapter 2: QEMU PC System emulator 81

2.7.1 Recommendations for KVM CPU model configuration on
x86 hosts

The information that follows provides recommendations for configuring CPU models on
x86 hosts. The goals are to maximise performance, while protecting guest OS against
various CPU hardware flaws, and optionally enabling live migration between hosts with
heterogeneous CPU models.

2.7.1.1 Preferred CPU models for Intel x86 hosts

The following CPU models are preferred for use on Intel hosts. Administrators / appli-
cations are recommended to use the CPU model that matches the generation of the host
CPUs in use. In a deployment with a mixture of host CPU models between machines, if live
migration compatibility is required, use the newest CPU model that is compatible across
all desired hosts.

Skylake-Server

Skylake-Server-IBRS

Intel Xeon Processor (Skylake, 2016)

Skylake-Client

Skylake-Client-IBRS

Intel Core Processor (Skylake, 2015)

Broadwell

Broadwell-IBRS

Broadwell-noTSX

Broadwell-noTSX-IBRS

Intel Core Processor (Broadwell, 2014)

Haswell

Haswell-IBRS

Haswell-noTSX

Haswell-noTSX-IBRS

Intel Core Processor (Haswell, 2013)

IvyBridge

IvyBridge-IBRS

Intel Xeon E3-12xx v2 (Ivy Bridge, 2012)

SandyBridge

SandyBridge-IBRS

Intel Xeon E312xx (Sandy Bridge, 2011)

Westmere

Westmere-IBRS

Westmere E56xx/L56xx/X56xx (Nehalem-C, 2010)

Nehalem

Nehalem-IBRS

Intel Core i7 9xx (Nehalem Class Core i7, 2008)

Penryn

Intel Core 2 Duo P9xxx (Penryn Class Core 2, 2007)

Chapter 2: QEMU PC System emulator 82

Conroe

Intel Celeron 4x0 (Conroe/Merom Class Core 2, 2006)

2.7.1.2 Important CPU features for Intel x86 hosts

The following are important CPU features that should be used on Intel x86 hosts, when
available in the host CPU. Some of them require explicit configuration to enable, as they
are not included by default in some, or all, of the named CPU models listed above. In
general all of these features are included if using "Host passthrough" or "Host model".

pcid

Recommended to mitigate the cost of the Meltdown (CVE-2017-5754) fix

Included by default in Haswell, Broadwell & Skylake Intel CPU models.

Should be explicitly turned on for Westmere, SandyBridge, and IvyBridge Intel
CPU models. Note that some desktop/mobile Westmere CPUs cannot support
this feature.

spec-ctrl

Required to enable the Spectre v2 (CVE-2017-5715) fix.

Included by default in Intel CPU models with -IBRS suffix.

Must be explicitly turned on for Intel CPU models without -IBRS suffix.

Requires the host CPU microcode to support this feature before it can be used
for guest CPUs.

stibp

Required to enable stronger Spectre v2 (CVE-2017-5715) fixes in some operat-
ing systems.

Must be explicitly turned on for all Intel CPU models.

Requires the host CPU microcode to support this feature before it can be used
for guest CPUs.

ssbd

Required to enable the CVE-2018-3639 fix

Not included by default in any Intel CPU model.

Must be explicitly turned on for all Intel CPU models.

Requires the host CPU microcode to support this feature before it can be used
for guest CPUs.

pdpe1gb

Recommended to allow guest OS to use 1GB size pages

Not included by default in any Intel CPU model.

Should be explicitly turned on for all Intel CPU models.

Note that not all CPU hardware will support this feature.

md-clear

Required to confirm the MDS (CVE-2018-12126, CVE-2018-12127, CVE-2018-
12130, CVE-2019-11091) fixes.

Chapter 2: QEMU PC System emulator 83

Not included by default in any Intel CPU model.

Must be explicitly turned on for all Intel CPU models.

Requires the host CPU microcode to support this feature before it can be used
for guest CPUs.

2.7.1.3 Preferred CPU models for AMD x86 hosts

The following CPU models are preferred for use on Intel hosts. Administrators / appli-
cations are recommended to use the CPU model that matches the generation of the host
CPUs in use. In a deployment with a mixture of host CPU models between machines, if live
migration compatibility is required, use the newest CPU model that is compatible across
all desired hosts.

EPYC

EPYC-IBPB

AMD EPYC Processor (2017)

Opteron_G5

AMD Opteron 63xx class CPU (2012)

Opteron_G4

AMD Opteron 62xx class CPU (2011)

Opteron_G3

AMD Opteron 23xx (Gen 3 Class Opteron, 2009)

Opteron_G2

AMD Opteron 22xx (Gen 2 Class Opteron, 2006)

Opteron_G1

AMD Opteron 240 (Gen 1 Class Opteron, 2004)

2.7.1.4 Important CPU features for AMD x86 hosts

The following are important CPU features that should be used on AMD x86 hosts, when
available in the host CPU. Some of them require explicit configuration to enable, as they
are not included by default in some, or all, of the named CPU models listed above. In
general all of these features are included if using "Host passthrough" or "Host model".

ibpb

Required to enable the Spectre v2 (CVE-2017-5715) fix.

Included by default in AMD CPU models with -IBPB suffix.

Must be explicitly turned on for AMD CPU models without -IBPB suffix.

Requires the host CPU microcode to support this feature before it can be used
for guest CPUs.

stibp

Required to enable stronger Spectre v2 (CVE-2017-5715) fixes in some operat-
ing systems.

Must be explicitly turned on for all AMD CPU models.

Requires the host CPU microcode to support this feature before it can be used
for guest CPUs.

Chapter 2: QEMU PC System emulator 84

virt-ssbd

Required to enable the CVE-2018-3639 fix

Not included by default in any AMD CPU model.

Must be explicitly turned on for all AMD CPU models.

This should be provided to guests, even if amd-ssbd is also provided, for maxi-
mum guest compatibility.

Note for some QEMU / libvirt versions, this must be force enabled when when
using "Host model", because this is a virtual feature that doesn’t exist in the
physical host CPUs.

amd-ssbd

Required to enable the CVE-2018-3639 fix

Not included by default in any AMD CPU model.

Must be explicitly turned on for all AMD CPU models.

This provides higher performance than virt-ssbd so should be exposed to guests
whenever available in the host. virt-ssbd should none the less also be exposed
for maximum guest compatibility as some kernels only know about virt-ssbd.

amd-no-ssb

Recommended to indicate the host is not vulnerable CVE-2018-3639

Not included by default in any AMD CPU model.

Future hardware generations of CPU will not be vulnerable to CVE-2018-3639,
and thus the guest should be told not to enable its mitigations, by exposing
amd-no-ssb. This is mutually exclusive with virt-ssbd and amd-ssbd.

pdpe1gb

Recommended to allow guest OS to use 1GB size pages

Not included by default in any AMD CPU model.

Should be explicitly turned on for all AMD CPU models.

Note that not all CPU hardware will support this feature.

2.7.1.5 Default x86 CPU models

The default QEMU CPU models are designed such that they can run on all hosts. If an
application does not wish to do perform any host compatibility checks before launching
guests, the default is guaranteed to work.

The default CPU models will, however, leave the guest OS vulnerable to various CPU
hardware flaws, so their use is strongly discouraged. Applications should follow the earlier
guidance to setup a better CPU configuration, with host passthrough recommended if live
migration is not needed.

qemu32

qemu64

QEMU Virtual CPU version 2.5+ (32 & 64 bit variants)

qemu64 is used for x86 64 guests and qemu32 is used for i686 guests, when no
-cpu argument is given to QEMU, or no <cpu> is provided in libvirt XML.

Chapter 2: QEMU PC System emulator 85

2.7.1.6 Other non-recommended x86 CPUs

The following CPUs models are compatible with most AMD and Intel x86 hosts, but their
usage is discouraged, as they expose a very limited featureset, which prevents guests having
optimal performance.

kvm32

kvm64

Common KVM processor (32 & 64 bit variants)

Legacy models just for historical compatibility with ancient QEMU versions.

486

athlon

phenom

coreduo

core2duo

n270

pentium

pentium2

pentium3

Various very old x86 CPU models, mostly predating the introduction of hard-
ware assisted virtualization, that should thus not be required for running virtual
machines.

2.7.2 Supported CPU model configurations on MIPS hosts

QEMU supports variety of MIPS CPU models:

2.7.2.1 Supported CPU models for MIPS32 hosts

The following CPU models are supported for use on MIPS32 hosts. Administrators /
applications are recommended to use the CPU model that matches the generation of the
host CPUs in use. In a deployment with a mixture of host CPU models between machines,
if live migration compatibility is required, use the newest CPU model that is compatible
across all desired hosts.

mips32r6-generic

MIPS32 Processor (Release 6, 2015)

P5600

MIPS32 Processor (P5600, 2014)

M14K

M14Kc

MIPS32 Processor (M14K, 2009)

74Kf

MIPS32 Processor (74K, 2007)

Chapter 2: QEMU PC System emulator 86

34Kf

MIPS32 Processor (34K, 2006)

24Kc

24KEc

24Kf

MIPS32 Processor (24K, 2003)

4Kc

4Km

4KEcR1

4KEmR1

4KEc

4KEm

MIPS32 Processor (4K, 1999)

2.7.2.2 Supported CPU models for MIPS64 hosts

The following CPU models are supported for use on MIPS64 hosts. Administrators /
applications are recommended to use the CPU model that matches the generation of the
host CPUs in use. In a deployment with a mixture of host CPU models between machines,
if live migration compatibility is required, use the newest CPU model that is compatible
across all desired hosts.

I6400

MIPS64 Processor (Release 6, 2014)

Loongson-2F

MIPS64 Processor (Loongson 2, 2008)

Loongson-2E

MIPS64 Processor (Loongson 2, 2006)

mips64dspr2

MIPS64 Processor (Release 2, 2006)

MIPS64R2-generic

5KEc

5KEf

MIPS64 Processor (Release 2, 2002)

20Kc

MIPS64 Processor (20K, 2000)

5Kc

5Kf

MIPS64 Processor (5K, 1999)

Chapter 2: QEMU PC System emulator 87

VR5432

MIPS64 Processor (VR, 1998)

R4000

MIPS64 Processor (MIPS III, 1991)

2.7.2.3 Supported CPU models for nanoMIPS hosts

The following CPU models are supported for use on nanoMIPS hosts. Administrators /
applications are recommended to use the CPU model that matches the generation of the
host CPUs in use. In a deployment with a mixture of host CPU models between machines,
if live migration compatibility is required, use the newest CPU model that is compatible
across all desired hosts.

I7200

MIPS I7200 (nanoMIPS, 2018)

2.7.2.4 Preferred CPU models for MIPS hosts

The following CPU models are preferred for use on different MIPS hosts:

MIPS III R4000

MIPS32R2 34Kf

MIPS64R6 I6400

nanoMIPS I7200

2.7.3 Syntax for configuring CPU models

The example below illustrate the approach to configuring the various CPU models / features
in QEMU and libvirt

2.7.3.1 QEMU command line

Host passthrough

$ qemu-system-x86_64 -cpu host

With feature customization:

$ qemu-system-x86_64 -cpu host,-vmx,...

Named CPU models

$ qemu-system-x86_64 -cpu Westmere

With feature customization:

$ qemu-system-x86_64 -cpu Westmere,+pcid,...

2.7.3.2 Libvirt guest XML

Host passthrough

<cpu mode=’host-passthrough’/>

With feature customization:

<cpu mode=’host-passthrough’>

<feature name="vmx" policy="disable"/>

Chapter 2: QEMU PC System emulator 88

...

</cpu>

Host model

<cpu mode=’host-model’/>

With feature customization:

<cpu mode=’host-model’>

<feature name="vmx" policy="disable"/>

...

</cpu>

Named model

<cpu mode=’custom’>

<model name="Westmere"/>

</cpu>

With feature customization:

<cpu mode=’custom’>

<model name="Westmere"/>

<feature name="pcid" policy="require"/>

...

</cpu>

2.8 Disk Images

QEMU supports many disk image formats, including growable disk images (their size in-
crease as non empty sectors are written), compressed and encrypted disk images.

2.8.1 Quick start for disk image creation

You can create a disk image with the command:

qemu-img create myimage.img mysize

where myimage.img is the disk image filename and mysize is its size in kilobytes. You can
add an M suffix to give the size in megabytes and a G suffix for gigabytes.

See Section 2.8.4 [qemu img invocation], page 89, for more information.

2.8.2 Snapshot mode

If you use the option -snapshot, all disk images are considered as read only. When sectors
in written, they are written in a temporary file created in /tmp. You can however force the
write back to the raw disk images by using the commit monitor command (or C-a s in the
serial console).

2.8.3 VM snapshots

VM snapshots are snapshots of the complete virtual machine including CPU state, RAM,
device state and the content of all the writable disks. In order to use VM snapshots, you
must have at least one non removable and writable block device using the qcow2 disk image
format. Normally this device is the first virtual hard drive.

Use the monitor command savevm to create a new VM snapshot or replace an existing one.
A human readable name can be assigned to each snapshot in addition to its numerical ID.

Chapter 2: QEMU PC System emulator 89

Use loadvm to restore a VM snapshot and delvm to remove a VM snapshot. info snapshots

lists the available snapshots with their associated information:

(qemu) info snapshots

Snapshot devices: hda

Snapshot list (from hda):

ID TAG VM SIZE DATE VM CLOCK

1 start 41M 2006-08-06 12:38:02 00:00:14.954

2 40M 2006-08-06 12:43:29 00:00:18.633

3 msys 40M 2006-08-06 12:44:04 00:00:23.514

A VM snapshot is made of a VM state info (its size is shown in info snapshots) and a
snapshot of every writable disk image. The VM state info is stored in the first qcow2 non
removable and writable block device. The disk image snapshots are stored in every disk
image. The size of a snapshot in a disk image is difficult to evaluate and is not shown by
info snapshots because the associated disk sectors are shared among all the snapshots to
save disk space (otherwise each snapshot would need a full copy of all the disk images).

When using the (unrelated) -snapshot option (Section 2.8.2 [disk images snapshot mode],
page 88), you can always make VM snapshots, but they are deleted as soon as you exit
QEMU.

VM snapshots currently have the following known limitations:

• They cannot cope with removable devices if they are removed or inserted after a snap-
shot is done.

• A few device drivers still have incomplete snapshot support so their state is not saved
or restored properly (in particular USB).

2.8.4 qemu-img Invocation

qemu-img [standard options] command [command options]

qemu-img allows you to create, convert and modify images offline. It can handle all image
formats supported by QEMU.

Warning: Never use qemu-img to modify images in use by a running virtual machine or any
other process; this may destroy the image. Also, be aware that querying an image that is
being modified by another process may encounter inconsistent state.

Standard options:

-h, --help

Display this help and exit

-V, --version

Display version information and exit

-T, --trace [[enable=]pattern][,events=file][,file=file]

Specify tracing options.

[enable=]pattern

Immediately enable events matching pattern (either event name
or a globbing pattern). This option is only available if QEMU
has been compiled with the simple, log or ftrace tracing backend.

Chapter 2: QEMU PC System emulator 90

To specify multiple events or patterns, specify the -trace option
multiple times.

Use -trace help to print a list of names of trace points.

events=file

Immediately enable events listed in file. The file must contain one
event name (as listed in the trace-events-all file) per line; glob-
bing patterns are accepted too. This option is only available if
QEMU has been compiled with the simple, log or ftrace tracing
backend.

file=file

Log output traces to file. This option is only available if QEMU
has been compiled with the simple tracing backend.

The following commands are supported:

amend [--object objectdef] [--image-opts] [-p] [-q] [-f fmt] [-t cache] -o

options filename

bench [-c count] [-d depth] [-f fmt] [--flush-interval=flush_interval] [-n]

[--no-drain] [-o offset] [--pattern=pattern] [-q] [-s buffer_size] [-S

step_size] [-t cache] [-w] [-U] filename

check [--object objectdef] [--image-opts] [-q] [-f fmt] [--output=ofmt] [-r

[leaks | all]] [-T src_cache] [-U] filename

commit [--object objectdef] [--image-opts] [-q] [-f fmt] [-t cache] [-b base]

[-d] [-p] filename

compare [--object objectdef] [--image-opts] [-f fmt] [-F fmt] [-T src_cache]

[-p] [-q] [-s] [-U] filename1 filename2

convert [--object objectdef] [--image-opts] [--target-image-opts] [-U] [-C]

[-c] [-p] [-q] [-n] [-f fmt] [-t cache] [-T src_cache] [-O output_fmt] [-B

backing_file] [-o options] [-l snapshot_param] [-S sparse_size] [-m

num_coroutines] [-W] [--salvage] filename [filename2 [...]] output_filename

create [--object objectdef] [-q] [-f fmt] [-b backing_file] [-F backing_fmt]

[-u] [-o options] filename [size]

dd [--image-opts] [-U] [-f fmt] [-O output_fmt] [bs=block_size] [count=blocks]

[skip=blocks] if=input of=output

info [--object objectdef] [--image-opts] [-f fmt] [--output=ofmt]

[--backing-chain] [-U] filename

map [--object objectdef] [--image-opts] [-f fmt] [--output=ofmt] [-U] filename

measure [--output=ofmt] [-O output_fmt] [-o options] [--size N | [--object

objectdef] [--image-opts] [-f fmt] [-l snapshot_param] filename]

snapshot [--object objectdef] [--image-opts] [-U] [-q] [-l | -a snapshot | -c

snapshot | -d snapshot] filename

rebase [--object objectdef] [--image-opts] [-U] [-q] [-f fmt] [-t cache] [-T

src_cache] [-p] [-u] -b backing_file [-F backing_fmt] filename

resize [--object objectdef] [--image-opts] [-f fmt]

[--preallocation=prealloc] [-q] [--shrink] filename [+ | -]size

Command parameters:

filename is a disk image filename

Chapter 2: QEMU PC System emulator 91

fmt is the disk image format. It is guessed automatically in most cases. See below
for a description of the supported disk formats.

size is the disk image size in bytes. Optional suffixes k or K (kilobyte, 1024) M

(megabyte, 1024k) and G (gigabyte, 1024M) and T (terabyte, 1024G) are sup-
ported. b is ignored.

output filename
is the destination disk image filename

output fmt
is the destination format

options is a comma separated list of format specific options in a name=value format.
Use -o ? for an overview of the options supported by the used format or see
the format descriptions below for details.

snapshot param
is param used for internal snapshot, format is ’snapshot.id=[ID],snapshot.name=[NAME]’
or ’[ID OR NAME]’

--object objectdef

is a QEMU user creatable object definition. See the qemu(1) manual page for a
description of the object properties. The most common object type is a secret,
which is used to supply passwords and/or encryption keys.

--image-opts

Indicates that the source filename parameter is to be interpreted as a full option
string, not a plain filename. This parameter is mutually exclusive with the -f
parameter.

--target-image-opts

Indicates that the output filename parameter(s) are to be interpreted as a full
option string, not a plain filename. This parameter is mutually exclusive with
the -O parameters. It is currently required to also use the -n parameter to skip
image creation. This restriction may be relaxed in a future release.

--force-share (-U)

If specified, qemu-img will open the image in shared mode, allowing other
QEMU processes to open it in write mode. For example, this can be used
to get the image information (with ’info’ subcommand) when the image is used
by a running guest. Note that this could produce inconsistent results because
of concurrent metadata changes, etc. This option is only allowed when opening
images in read-only mode.

--backing-chain

will enumerate information about backing files in a disk image chain. Refer
below for further description.

-c indicates that target image must be compressed (qcow format only)

-h with or without a command shows help and lists the supported formats

Chapter 2: QEMU PC System emulator 92

-p display progress bar (compare, convert and rebase commands only). If the -p
option is not used for a command that supports it, the progress is reported
when the process receives a SIGUSR1 or SIGINFO signal.

-q Quiet mode - do not print any output (except errors). There’s no progress bar
in case both -q and -p options are used.

-S size indicates the consecutive number of bytes that must contain only zeros for
qemu-img to create a sparse image during conversion. This value is rounded
down to the nearest 512 bytes. You may use the common size suffixes like k for
kilobytes.

-t cache specifies the cache mode that should be used with the (destination) file. See the
documentation of the emulator’s -drive cache=... option for allowed values.

-T src_cache

specifies the cache mode that should be used with the source file(s). See the
documentation of the emulator’s -drive cache=... option for allowed values.

Parameters to snapshot subcommand:

snapshot is the name of the snapshot to create, apply or delete

-a applies a snapshot (revert disk to saved state)

-c creates a snapshot

-d deletes a snapshot

-l lists all snapshots in the given image

Parameters to compare subcommand:

-f First image format

-F Second image format

-s Strict mode - fail on different image size or sector allocation

Parameters to convert subcommand:

-n Skip the creation of the target volume

-m Number of parallel coroutines for the convert process

-W Allow out-of-order writes to the destination. This option improves performance,
but is only recommended for preallocated devices like host devices or other raw
block devices.

-C Try to use copy offloading to move data from source image to target. This
may improve performance if the data is remote, such as with NFS or iSCSI
backends, but will not automatically sparsify zero sectors, and may result in a
fully allocated target image depending on the host support for getting allocation
information.

--salvage

Try to ignore I/O errors when reading. Unless in quiet mode (-q), errors will
still be printed. Areas that cannot be read from the source will be treated as
containing only zeroes.

Chapter 2: QEMU PC System emulator 93

Parameters to dd subcommand:

bs=block_size

defines the block size

count=blocks

sets the number of input blocks to copy

if=input sets the input file

of=output

sets the output file

skip=blocks

sets the number of input blocks to skip

Command description:

amend [--object objectdef] [--image-opts] [-p] [-q] [-f fmt] [-t cache] -o

options filename

Amends the image format specific options for the image file filename. Not all
file formats support this operation.

bench [-c count] [-d depth] [-f fmt] [--flush-interval=flush_interval] [-n]

[--no-drain] [-o offset] [--pattern=pattern] [-q] [-s buffer_size] [-S

step_size] [-t cache] [-w] [-U] filename

Run a simple sequential I/O benchmark on the specified image. If -w is speci-
fied, a write test is performed, otherwise a read test is performed.

A total number of count I/O requests is performed, each buffer size bytes in
size, and with depth requests in parallel. The first request starts at the position
given by offset, each following request increases the current position by step size.
If step size is not given, buffer size is used for its value.

If flush interval is specified for a write test, the request queue is drained and a
flush is issued before new writes are made whenever the number of remaining
requests is a multiple of flush interval. If additionally --no-drain is specified,
a flush is issued without draining the request queue first.

If -n is specified, the native AIO backend is used if possible. On Linux, this
option only works if -t none or -t directsync is specified as well.

For write tests, by default a buffer filled with zeros is written. This can be
overridden with a pattern byte specified by pattern.

check [--object objectdef] [--image-opts] [-q] [-f fmt] [--output=ofmt] [-r

[leaks | all]] [-T src_cache] [-U] filename

Perform a consistency check on the disk image filename. The command can
output in the format ofmt which is either human or json. The JSON output is
an object of QAPI type ImageCheck.

If -r is specified, qemu-img tries to repair any inconsistencies found during the
check. -r leaks repairs only cluster leaks, whereas -r all fixes all kinds of
errors, with a higher risk of choosing the wrong fix or hiding corruption that
has already occurred.

Only the formats qcow2, qed and vdi support consistency checks.

Chapter 2: QEMU PC System emulator 94

In case the image does not have any inconsistencies, check exits with 0. Other
exit codes indicate the kind of inconsistency found or if another error occurred.
The following table summarizes all exit codes of the check subcommand:

0 Check completed, the image is (now) consistent

1 Check not completed because of internal errors

2 Check completed, image is corrupted

3 Check completed, image has leaked clusters, but is not corrupted

63 Checks are not supported by the image format

If -r is specified, exit codes representing the image state refer to the state after
(the attempt at) repairing it. That is, a successful -r all will yield the exit
code 0, independently of the image state before.

commit [--object objectdef] [--image-opts] [-q] [-f fmt] [-t cache] [-b base]

[-d] [-p] filename

Commit the changes recorded in filename in its base image or backing file. If
the backing file is smaller than the snapshot, then the backing file will be resized
to be the same size as the snapshot. If the snapshot is smaller than the backing
file, the backing file will not be truncated. If you want the backing file to match
the size of the smaller snapshot, you can safely truncate it yourself once the
commit operation successfully completes.

The image filename is emptied after the operation has succeeded. If you do
not need filename afterwards and intend to drop it, you may skip emptying
filename by specifying the -d flag.

If the backing chain of the given image file filename has more than one layer,
the backing file into which the changes will be committed may be specified as
base (which has to be part of filename’s backing chain). If base is not specified,
the immediate backing file of the top image (which is filename) will be used.
Note that after a commit operation all images between base and the top image
will be invalid and may return garbage data when read. For this reason, -b
implies -d (so that the top image stays valid).

compare [--object objectdef] [--image-opts] [-f fmt] [-F fmt] [-T src_cache]

[-p] [-q] [-s] [-U] filename1 filename2

Check if two images have the same content. You can compare images with
different format or settings.

The format is probed unless you specify it by -f (used for filename1) and/or -F
(used for filename2) option.

By default, images with different size are considered identical if the larger image
contains only unallocated and/or zeroed sectors in the area after the end of the
other image. In addition, if any sector is not allocated in one image and contains
only zero bytes in the second one, it is evaluated as equal. You can use Strict
mode by specifying the -s option. When compare runs in Strict mode, it fails in
case image size differs or a sector is allocated in one image and is not allocated
in the second one.

Chapter 2: QEMU PC System emulator 95

By default, compare prints out a result message. This message displays infor-
mation that both images are same or the position of the first different byte. In
addition, result message can report different image size in case Strict mode is
used.

Compare exits with 0 in case the images are equal and with 1 in case the images
differ. Other exit codes mean an error occurred during execution and standard
error output should contain an error message. The following table sumarizes
all exit codes of the compare subcommand:

0 Images are identical

1 Images differ

2 Error on opening an image

3 Error on checking a sector allocation

4 Error on reading data

convert [--object objectdef] [--image-opts] [--target-image-opts] [-U] [-C]

[-c] [-p] [-q] [-n] [-f fmt] [-t cache] [-T src_cache] [-O output_fmt] [-B

backing_file] [-o options] [-l snapshot_param] [-S sparse_size] [-m

num_coroutines] [-W] filename [filename2 [...]] output_filename

Convert the disk image filename or a snapshot snapshot param to disk image
output filename using format output fmt. It can be optionally compressed (-c
option) or use any format specific options like encryption (-o option).

Only the formats qcow and qcow2 support compression. The compression is
read-only. It means that if a compressed sector is rewritten, then it is rewritten
as uncompressed data.

Image conversion is also useful to get smaller image when using a growable
format such as qcow: the empty sectors are detected and suppressed from the
destination image.

sparse size indicates the consecutive number of bytes (defaults to 4k) that must
contain only zeros for qemu-img to create a sparse image during conversion. If
sparse size is 0, the source will not be scanned for unallocated or zero sectors,
and the destination image will always be fully allocated.

You can use the backing file option to force the output image to be created as
a copy on write image of the specified base image; the backing file should have
the same content as the input’s base image, however the path, image format,
etc may differ.

If a relative path name is given, the backing file is looked up relative to the
directory containing output filename.

If the -n option is specified, the target volume creation will be skipped. This
is useful for formats such as rbd if the target volume has already been created
with site specific options that cannot be supplied through qemu-img.

Out of order writes can be enabled with -W to improve performance. This
is only recommended for preallocated devices like host devices or other raw
block devices. Out of order write does not work in combination with creating
compressed images.

Chapter 2: QEMU PC System emulator 96

num coroutines specifies how many coroutines work in parallel during the con-
vert process (defaults to 8).

create [--object objectdef] [-q] [-f fmt] [-b backing_file] [-F backing_fmt]

[-u] [-o options] filename [size]

Create the new disk image filename of size size and format fmt. Depending on
the file format, you can add one or more options that enable additional features
of this format.

If the option backing file is specified, then the image will record only the differ-
ences from backing file. No size needs to be specified in this case. backing file
will never be modified unless you use the commit monitor command (or qemu-
img commit).

If a relative path name is given, the backing file is looked up relative to the
directory containing filename.

Note that a given backing file will be opened to check that it is valid. Use the
-u option to enable unsafe backing file mode, which means that the image will
be created even if the associated backing file cannot be opened. A matching
backing file must be created or additional options be used to make the backing
file specification valid when you want to use an image created this way.

The size can also be specified using the size option with -o, it doesn’t need to
be specified separately in this case.

dd [--image-opts] [-U] [-f fmt] [-O output_fmt] [bs=block_size] [count=blocks]

[skip=blocks] if=input of=output

Dd copies from input file to output file converting it from fmt format to out-
put fmt format.

The data is by default read and written using blocks of 512 bytes but can be
modified by specifying block size. If count=blocks is specified dd will stop
reading input after reading blocks input blocks.

The size syntax is similar to dd(1)’s size syntax.

info [--object objectdef] [--image-opts] [-f fmt] [--output=ofmt]

[--backing-chain] [-U] filename

Give information about the disk image filename. Use it in particular to know
the size reserved on disk which can be different from the displayed size. If VM
snapshots are stored in the disk image, they are displayed too.

If a disk image has a backing file chain, information about each disk image in
the chain can be recursively enumerated by using the option --backing-chain.

For instance, if you have an image chain like:

base.qcow2 <- snap1.qcow2 <- snap2.qcow2

To enumerate information about each disk image in the above chain, starting
from top to base, do:

qemu-img info --backing-chain snap2.qcow2

The command can output in the format ofmt which is either human or json. The
JSON output is an object of QAPI type ImageInfo; with --backing-chain, it
is an array of ImageInfo objects.

Chapter 2: QEMU PC System emulator 97

--output=human reports the following information (for every image in the
chain):

image The image file name

file format The image format

virtual size
The size of the guest disk

disk size How much space the image file occupies on the host file system
(may be shown as 0 if this information is unavailable, e.g. because
there is no file system)

cluster size
Cluster size of the image format, if applicable

encrypted Whether the image is encrypted (only present if so)

cleanly shut down
This is shown as no if the image is dirty and will have to be auto-
repaired the next time it is opened in qemu.

backing file
The backing file name, if present

backing file format
The format of the backing file, if the image enforces it

Snapshot list
A list of all internal snapshots

Format specific information
Further information whose structure depends on the im-
age format. This section is a textual representation of
the respective ImageInfoSpecific* QAPI object (e.g.
ImageInfoSpecificQCow2 for qcow2 images).

map [--object objectdef] [--image-opts] [-f fmt] [--output=ofmt] [-U] filename

Dump the metadata of image filename and its backing file chain. In particular,
this commands dumps the allocation state of every sector of filename, together
with the topmost file that allocates it in the backing file chain.

Two option formats are possible. The default format (human) only dumps
known-nonzero areas of the file. Known-zero parts of the file are omitted al-
together, and likewise for parts that are not allocated throughout the chain.
qemu-img output will identify a file from where the data can be read, and the
offset in the file. Each line will include four fields, the first three of which are
hexadecimal numbers. For example the first line of:

Offset Length Mapped to File

0 0x20000 0x50000 /tmp/overlay.qcow2

0x100000 0x10000 0x95380000 /tmp/backing.qcow2

means that 0x20000 (131072) bytes starting at offset 0 in the image are avail-
able in /tmp/overlay.qcow2 (opened in raw format) starting at offset 0x50000

Chapter 2: QEMU PC System emulator 98

(327680). Data that is compressed, encrypted, or otherwise not available in raw
format will cause an error if human format is in use. Note that file names can
include newlines, thus it is not safe to parse this output format in scripts.

The alternative format json will return an array of dictionaries in JSON format.
It will include similar information in the start, length, offset fields; it will
also include other more specific information:

− whether the sectors contain actual data or not (boolean field data; if false,
the sectors are either unallocated or stored as optimized all-zero clusters);

− whether the data is known to read as zero (boolean field zero);

− in order to make the output shorter, the target file is expressed as a depth;
for example, a depth of 2 refers to the backing file of the backing file of
filename.

In JSON format, the offset field is optional; it is absent in cases where human
format would omit the entry or exit with an error. If data is false and the
offset field is present, the corresponding sectors in the file are not yet in use,
but they are preallocated.

For more information, consult include/block/block.h in QEMU’s source
code.

measure [--output=ofmt] [-O output_fmt] [-o options] [--size N | [--object

objectdef] [--image-opts] [-f fmt] [-l snapshot_param] filename]

Calculate the file size required for a new image. This information can be used
to size logical volumes or SAN LUNs appropriately for the image that will be
placed in them. The values reported are guaranteed to be large enough to fit
the image. The command can output in the format ofmt which is either human
or json. The JSON output is an object of QAPI type BlockMeasureInfo.

If the size N is given then act as if creating a new empty image file using
qemu-img create. If filename is given then act as if converting an existing
image file using qemu-img convert. The format of the new file is given by
output fmt while the format of an existing file is given by fmt.

A snapshot in an existing image can be specified using snapshot param.

The following fields are reported:

required size: 524288

fully allocated size: 1074069504

The required size is the file size of the new image. It may be smaller than
the virtual disk size if the image format supports compact representation.

The fully allocated size is the file size of the new image once data has been
written to all sectors. This is the maximum size that the image file can occupy
with the exception of internal snapshots, dirty bitmaps, vmstate data, and other
advanced image format features.

snapshot [--object objectdef] [--image-opts] [-U] [-q] [-l | -a snapshot | -c

snapshot | -d snapshot] filename

List, apply, create or delete snapshots in image filename.

Chapter 2: QEMU PC System emulator 99

rebase [--object objectdef] [--image-opts] [-U] [-q] [-f fmt] [-t cache] [-T

src_cache] [-p] [-u] -b backing_file [-F backing_fmt] filename

Changes the backing file of an image. Only the formats qcow2 and qed support
changing the backing file.

The backing file is changed to backing file and (if the image format of filename
supports this) the backing file format is changed to backing fmt. If backing file
is specified as “” (the empty string), then the image is rebased onto no backing
file (i.e. it will exist independently of any backing file).

If a relative path name is given, the backing file is looked up relative to the
directory containing filename.

cache specifies the cache mode to be used for filename, whereas src cache spec-
ifies the cache mode for reading backing files.

There are two different modes in which rebase can operate:

Safe mode This is the default mode and performs a real rebase operation.
The new backing file may differ from the old one and qemu-img
rebase will take care of keeping the guest-visible content of filename
unchanged.

In order to achieve this, any clusters that differ between backing file
and the old backing file of filename are merged into filename before
actually changing the backing file.

Note that the safe mode is an expensive operation, comparable to
converting an image. It only works if the old backing file still exists.

Unsafe mode

qemu-img uses the unsafe mode if -u is specified. In this mode, only
the backing file name and format of filename is changed without any
checks on the file contents. The user must take care of specifying
the correct new backing file, or the guest-visible content of the
image will be corrupted.

This mode is useful for renaming or moving the backing file to
somewhere else. It can be used without an accessible old backing
file, i.e. you can use it to fix an image whose backing file has already
been moved/renamed.

You can use rebase to perform a “diff” operation on two disk images. This can
be useful when you have copied or cloned a guest, and you want to get back to
a thin image on top of a template or base image.

Say that base.img has been cloned as modified.img by copying it, and that
the modified.img guest has run so there are now some changes compared to
base.img. To construct a thin image called diff.qcow2 that contains just the
differences, do:

qemu-img create -f qcow2 -b modified.img diff.qcow2

qemu-img rebase -b base.img diff.qcow2

At this point, modified.img can be discarded, since base.img + diff.qcow2

contains the same information.

Chapter 2: QEMU PC System emulator 100

resize [--object objectdef] [--image-opts] [-f fmt]

[--preallocation=prealloc] [-q] [--shrink] filename [+ | -]size

Change the disk image as if it had been created with size.

Before using this command to shrink a disk image, you MUST use file sys-
tem and partitioning tools inside the VM to reduce allocated file systems and
partition sizes accordingly. Failure to do so will result in data loss!

When shrinking images, the --shrink option must be given. This informs
qemu-img that the user acknowledges all loss of data beyond the truncated
image’s end.

After using this command to grow a disk image, you must use file system and
partitioning tools inside the VM to actually begin using the new space on the
device.

When growing an image, the --preallocation option may be used to specify
how the additional image area should be allocated on the host. See the format
description in the NOTES section which values are allowed. Using this option
may result in slightly more data being allocated than necessary.

2.8.5 qemu-nbd Invocation

qemu-nbd [OPTION]... filename

qemu-nbd -L [OPTION]...

qemu-nbd -d dev

Export a QEMU disk image using the NBD protocol.

Other uses:

• Bind a /dev/nbdX block device to a QEMU server (on Linux).

• As a client to query exports of a remote NBD server.

filename is a disk image filename, or a set of block driver options if --image-opts is
specified.

dev is an NBD device.

--object type,id=id,...props...

Define a new instance of the type object class identified by id. See the qemu(1)
manual page for full details of the properties supported. The common object
types that it makes sense to define are the secret object, which is used to
supply passwords and/or encryption keys, and the tls-creds object, which is
used to supply TLS credentials for the qemu-nbd server or client.

-p, --port=port

The TCP port to listen on as a server, or connect to as a client (default ‘10809’).

-o, --offset=offset

The offset into the image.

-b, --bind=iface

The interface to bind to as a server, or connect to as a client (default ‘0.0.0.0’).

Chapter 2: QEMU PC System emulator 101

-k, --socket=path

Use a unix socket with path path.

--image-opts

Treat filename as a set of image options, instead of a plain filename. If this flag
is specified, the -f flag should not be used, instead the ’format=’ option should
be set.

-f, --format=fmt

Force the use of the block driver for format fmt instead of auto-detecting.

-r, --read-only

Export the disk as read-only.

-P, --partition=num

Deprecated: Only expose MBR partition num. Understands physical partitions
1-4 and logical partition 5. New code should instead use --image-opts with
the raw driver wrapping a subset of the original image.

-B, --bitmap=name

If filename has a qcow2 persistent bitmap name, expose that bit-
map via the “qemu:dirty-bitmap:name” context accessible through
NBD OPT SET META CONTEXT.

-s, --snapshot

Use filename as an external snapshot, create a temporary file with
backing file=filename, redirect the write to the temporary one.

-l, --load-snapshot=snapshot_param

Load an internal snapshot inside filename and export it as an read-only de-
vice, snapshot param format is ’snapshot.id=[ID],snapshot.name=[NAME]’ or
’[ID OR NAME]’

-n, --nocache

--cache=cache

The cache mode to be used with the file. See the documentation of the emula-
tor’s -drive cache=... option for allowed values.

--aio=aio

Set the asynchronous I/O mode between ‘threads’ (the default) and ‘native’
(Linux only).

--discard=discard

Control whether discard (also known as trim or unmap) requests are ignored
or passed to the filesystem. discard is one of ‘ignore’ (or ‘off’), ‘unmap’ (or
‘on’). The default is ‘ignore’.

--detect-zeroes=detect-zeroes

Control the automatic conversion of plain zero writes by the OS to driver-
specific optimized zero write commands. detect-zeroes is one of ‘off’, ‘on’ or
‘unmap’. ‘unmap’ converts a zero write to an unmap operation and can only be
used if discard is set to ‘unmap’. The default is ‘off’.

Chapter 2: QEMU PC System emulator 102

-c, --connect=dev

Connect filename to NBD device dev (Linux only).

-d, --disconnect

Disconnect the device dev (Linux only).

-e, --shared=num

Allow up to num clients to share the device (default ‘1’). Safe for readers, but
for now, consistency is not guaranteed between multiple writers.

-t, --persistent

Don’t exit on the last connection.

-x, --export-name=name

Set the NBD volume export name (default of a zero-length string).

-D, --description=description

Set the NBD volume export description, as a human-readable string.

-L, --list

Connect as a client and list all details about the exports exposed by a remote
NBD server. This enables list mode, and is incompatible with options that
change behavior related to a specific export (such as --export-name, --offset,
...).

--tls-creds=ID

Enable mandatory TLS encryption for the server by setting the ID of the TLS
credentials object previously created with the –object option; or provide the
credentials needed for connecting as a client in list mode.

--fork Fork off the server process and exit the parent once the server is running.

--pid-file=PATH

Store the server’s process ID in the given file.

--tls-authz=ID

Specify the ID of a qauthz object previously created with the –object option.
This will be used to authorize connecting users against their x509 distinguished
name.

-v, --verbose

Display extra debugging information.

-h, --help

Display this help and exit.

-V, --version

Display version information and exit.

-T, --trace [[enable=]pattern][,events=file][,file=file]

Specify tracing options.

[enable=]pattern

Immediately enable events matching pattern (either event name
or a globbing pattern). This option is only available if QEMU

Chapter 2: QEMU PC System emulator 103

has been compiled with the simple, log or ftrace tracing backend.
To specify multiple events or patterns, specify the -trace option
multiple times.

Use -trace help to print a list of names of trace points.

events=file

Immediately enable events listed in file. The file must contain one
event name (as listed in the trace-events-all file) per line; glob-
bing patterns are accepted too. This option is only available if
QEMU has been compiled with the simple, log or ftrace tracing
backend.

file=file

Log output traces to file. This option is only available if QEMU
has been compiled with the simple tracing backend.

Start a server listening on port 10809 that exposes only the guest-visible contents of a qcow2
file, with no TLS encryption, and with the default export name (an empty string). The
command is one-shot, and will block until the first successful client disconnects:

qemu-nbd -f qcow2 file.qcow2

Start a long-running server listening with encryption on port 10810, and whitelist clients
with a specific X.509 certificate to connect to a 1 megabyte subset of a raw file, using the
export name ’subset’:

qemu-nbd \

--object tls-creds-x509,id=tls0,endpoint=server,dir=/path/to/qemutls \

--object ’authz-simple,id=auth0,identity=CN=laptop.example.com,,\

O=Example Org,,L=London,,ST=London,,C=GB’ \

--tls-creds tls0 --tls-authz auth0 \

-t -x subset -p 10810 \

--image-opts driver=raw,offset=1M,size=1M,file.driver=file,file.filename=file.raw

Serve a read-only copy of just the first MBR partition of a guest image over a Unix socket
with as many as 5 simultaneous readers, with a persistent process forked as a daemon:

qemu-nbd --fork --persistent --shared=5 --socket=/path/to/sock \

--partition=1 --read-only --format=qcow2 file.qcow2

Expose the guest-visible contents of a qcow2 file via a block device /dev/nbd0 (and pos-
sibly creating /dev/nbd0p1 and friends for partitions found within), then disconnect the
device when done. Access to bind qemu-nbd to an /dev/nbd device generally requires root
privileges, and may also require the execution of modprobe nbd to enable the kernel NBD
client module. CAUTION : Do not use this method to mount filesystems from an untrusted
guest image - a malicious guest may have prepared the image to attempt to trigger kernel
bugs in partition probing or file system mounting.

qemu-nbd -c /dev/nbd0 -f qcow2 file.qcow2

qemu-nbd -d /dev/nbd0

Query a remote server to see details about what export(s) it is serving on port 10809, and
authenticating via PSK:

qemu-nbd \

Chapter 2: QEMU PC System emulator 104

--object tls-creds-psk,id=tls0,dir=/tmp/keys,username=eblake,endpoint=client \

--tls-creds tls0 -L -b remote.example.com

QEMU block driver reference manual

2.8.6 Disk image file formats

QEMU supports many image file formats that can be used with VMs as well as with
any of the tools (like qemu-img). This includes the preferred formats raw and qcow2 as
well as formats that are supported for compatibility with older QEMU versions or other
hypervisors.

Depending on the image format, different options can be passed to qemu-img create and
qemu-img convert using the -o option. This section describes each format and the options
that are supported for it.

raw

Raw disk image format. This format has the advantage of being simple and
easily exportable to all other emulators. If your file system supports holes (for
example in ext2 or ext3 on Linux or NTFS on Windows), then only the written
sectors will reserve space. Use qemu-img info to know the real size used by the
image or ls -ls on Unix/Linux.

Supported options:

preallocation

Preallocation mode (allowed values: off, falloc, full). falloc

mode preallocates space for image by calling posix fallocate(). full
mode preallocates space for image by writing zeros to underlying
storage.

qcow2 QEMU image format, the most versatile format. Use it to have smaller images
(useful if your filesystem does not supports holes, for example on Windows),
zlib based compression and support of multiple VM snapshots.

Supported options:

compat Determines the qcow2 version to use. compat=0.10 uses the tra-
ditional image format that can be read by any QEMU since 0.10.
compat=1.1 enables image format extensions that only QEMU 1.1
and newer understand (this is the default). Amongst others, this
includes zero clusters, which allow efficient copy-on-read for sparse
images.

backing_file

File name of a base image (see create subcommand)

backing_fmt

Image format of the base image

encryption

This option is deprecated and equivalent to encrypt.format=aes

encrypt.format

If this is set to luks, it requests that the qcow2 payload (not
qcow2 header) be encrypted using the LUKS format. The

Chapter 2: QEMU PC System emulator 105

passphrase to use to unlock the LUKS key slot is given by the
encrypt.key-secret parameter. LUKS encryption parameters
can be tuned with the other encrypt.* parameters.

If this is set to aes, the image is encrypted with 128-bit AES-
CBC. The encryption key is given by the encrypt.key-secret

parameter. This encryption format is considered to be flawed by
modern cryptography standards, suffering from a number of design
problems:

− The AES-CBC cipher is used with predictable initialization
vectors based on the sector number. This makes it vulnerable
to chosen plaintext attacks which can reveal the existence of
encrypted data.

− The user passphrase is directly used as the encryption key. A
poorly chosen or short passphrase will compromise the security
of the encryption.

− In the event of the passphrase being compromised there is no
way to change the passphrase to protect data in any qcow im-
ages. The files must be cloned, using a different encryption
passphrase in the new file. The original file must then be se-
curely erased using a program like shred, though even this is
ineffective with many modern storage technologies.

The use of this is no longer supported in system emulators. Support
only remains in the command line utilities, for the purposes of data
liberation and interoperability with old versions of QEMU. The
luks format should be used instead.

encrypt.key-secret

Provides the ID of a secret object that contains the
passphrase (encrypt.format=luks) or encryption key
(encrypt.format=aes).

encrypt.cipher-alg

Name of the cipher algorithm and key length. Currently defaults
to aes-256. Only used when encrypt.format=luks.

encrypt.cipher-mode

Name of the encryption mode to use. Currently defaults to xts.
Only used when encrypt.format=luks.

encrypt.ivgen-alg

Name of the initialization vector generator algorithm. Currently
defaults to plain64. Only used when encrypt.format=luks.

encrypt.ivgen-hash-alg

Name of the hash algorithm to use with the initialization vec-
tor generator (if required). Defaults to sha256. Only used when
encrypt.format=luks.

Chapter 2: QEMU PC System emulator 106

encrypt.hash-alg

Name of the hash algorithm to use for PBKDF algorithm Defaults
to sha256. Only used when encrypt.format=luks.

encrypt.iter-time

Amount of time, in milliseconds, to use for PBKDF algorithm per
key slot. Defaults to 2000. Only used when encrypt.format=luks.

cluster_size

Changes the qcow2 cluster size (must be between 512 and 2M).
Smaller cluster sizes can improve the image file size whereas larger
cluster sizes generally provide better performance.

preallocation

Preallocation mode (allowed values: off, metadata, falloc, full).
An image with preallocated metadata is initially larger but can
improve performance when the image needs to grow. falloc and
full preallocations are like the same options of raw format, but
sets up metadata also.

lazy_refcounts

If this option is set to on, reference count updates are postponed
with the goal of avoiding metadata I/O and improving perfor-
mance. This is particularly interesting with cache=writethrough

which doesn’t batch metadata updates. The tradeoff is that after
a host crash, the reference count tables must be rebuilt, i.e. on
the next open an (automatic) qemu-img check -r all is required,
which may take some time.

This option can only be enabled if compat=1.1 is specified.

nocow If this option is set to on, it will turn off COW of the file. It’s only
valid on btrfs, no effect on other file systems.

Btrfs has low performance when hosting a VM image file, even more
when the guest on the VM also using btrfs as file system. Turning
off COW is a way to mitigate this bad performance. Generally there
are two ways to turn off COW on btrfs: a) Disable it by mounting
with nodatacow, then all newly created files will be NOCOW. b)
For an empty file, add the NOCOW file attribute. That’s what this
option does.

Note: this option is only valid to new or empty files. If there is an
existing file which is COW and has data blocks already, it couldn’t
be changed to NOCOW by setting nocow=on. One can issue lsattr
filename to check if the NOCOW flag is set or not (Capital ’C’ is
NOCOW flag).

qed Old QEMU image format with support for backing files and compact image
files (when your filesystem or transport medium does not support holes).

When converting QED images to qcow2, you might want to consider using the
lazy_refcounts=on option to get a more QED-like behaviour.

Chapter 2: QEMU PC System emulator 107

Supported options:

backing_file

File name of a base image (see create subcommand).

backing_fmt

Image file format of backing file (optional). Useful if the format
cannot be autodetected because it has no header, like some vhd/vpc
files.

cluster_size

Changes the cluster size (must be power-of-2 between 4K and 64K).
Smaller cluster sizes can improve the image file size whereas larger
cluster sizes generally provide better performance.

table_size

Changes the number of clusters per L1/L2 table (must be power-
of-2 between 1 and 16). There is normally no need to change this
value but this option can be used for performance benchmarking.

qcow Old QEMU image format with support for backing files, compact image files,
encryption and compression.

Supported options:

backing_file

File name of a base image (see create subcommand)

encryption

This option is deprecated and equivalent to encrypt.format=aes

encrypt.format

If this is set to aes, the image is encrypted with 128-bit AES-
CBC. The encryption key is given by the encrypt.key-secret

parameter. This encryption format is considered to be flawed by
modern cryptography standards, suffering from a number of design
problems enumerated previously against the qcow2 image format.

The use of this is no longer supported in system emulators. Support
only remains in the command line utilities, for the purposes of data
liberation and interoperability with old versions of QEMU.

Users requiring native encryption should use the qcow2 format in-
stead with encrypt.format=luks.

encrypt.key-secret

Provides the ID of a secret object that contains the encryption
key (encrypt.format=aes).

luks

LUKS v1 encryption format, compatible with Linux dm-crypt/cryptsetup

Supported options:

key-secret

Provides the ID of a secret object that contains the passphrase.

Chapter 2: QEMU PC System emulator 108

cipher-alg

Name of the cipher algorithm and key length. Currently defaults
to aes-256.

cipher-mode

Name of the encryption mode to use. Currently defaults to xts.

ivgen-alg

Name of the initialization vector generator algorithm. Currently
defaults to plain64.

ivgen-hash-alg

Name of the hash algorithm to use with the initialization vector
generator (if required). Defaults to sha256.

hash-alg

Name of the hash algorithm to use for PBKDF algorithm Defaults
to sha256.

iter-time

Amount of time, in milliseconds, to use for PBKDF algorithm per
key slot. Defaults to 2000.

vdi VirtualBox 1.1 compatible image format. Supported options:

static If this option is set to on, the image is created with metadata
preallocation.

vmdk VMware 3 and 4 compatible image format.

Supported options:

backing_file

File name of a base image (see create subcommand).

compat6 Create a VMDK version 6 image (instead of version 4)

hwversion

Specify vmdk virtual hardware version. Compat6 flag cannot be
enabled if hwversion is specified.

subformat

Specifies which VMDK subformat to use. Valid op-
tions are monolithicSparse (default), monolithicFlat,
twoGbMaxExtentSparse, twoGbMaxExtentFlat and
streamOptimized.

vpc VirtualPC compatible image format (VHD). Supported options:

subformat

Specifies which VHD subformat to use. Valid options are dynamic
(default) and fixed.

VHDX Hyper-V compatible image format (VHDX). Supported options:

subformat

Specifies which VHDX subformat to use. Valid options are dynamic
(default) and fixed.

Chapter 2: QEMU PC System emulator 109

block_state_zero

Force use of payload blocks of type ’ZERO’. Can be set to on (de-
fault) or off. When set to off, new blocks will be created as
PAYLOAD_BLOCK_NOT_PRESENT, which means parsers are free to re-
turn arbitrary data for those blocks. Do not set to off when using
qemu-img convert with subformat=dynamic.

block_size

Block size; min 1 MB, max 256 MB. 0 means auto-calculate based
on image size.

log_size Log size; min 1 MB.

2.8.6.1 Read-only formats

More disk image file formats are supported in a read-only mode.

bochs Bochs images of growing type.

cloop Linux Compressed Loop image, useful only to reuse directly compressed CD-
ROM images present for example in the Knoppix CD-ROMs.

dmg Apple disk image.

parallels

Parallels disk image format.

2.8.7 Using host drives

In addition to disk image files, QEMU can directly access host devices. We describe here
the usage for QEMU version >= 0.8.3.

2.8.7.1 Linux

On Linux, you can directly use the host device filename instead of a disk image filename
provided you have enough privileges to access it. For example, use /dev/cdrom to access
to the CDROM.

CD You can specify a CDROM device even if no CDROM is loaded. QEMU has
specific code to detect CDROM insertion or removal. CDROM ejection by the
guest OS is supported. Currently only data CDs are supported.

Floppy You can specify a floppy device even if no floppy is loaded. Floppy removal is
currently not detected accurately (if you change floppy without doing floppy
access while the floppy is not loaded, the guest OS will think that the same
floppy is loaded). Use of the host’s floppy device is deprecated, and support for
it will be removed in a future release.

Hard disks

Hard disks can be used. Normally you must specify the whole disk (/dev/hdb
instead of /dev/hdb1) so that the guest OS can see it as a partitioned disk.
WARNING: unless you know what you do, it is better to only make READ-
ONLY accesses to the hard disk otherwise you may corrupt your host data
(use the -snapshot command line option or modify the device permissions
accordingly).

Chapter 2: QEMU PC System emulator 110

2.8.7.2 Windows

CD The preferred syntax is the drive letter (e.g. d:). The alternate syntax \\.\d:

is supported. /dev/cdrom is supported as an alias to the first CDROM drive.

Currently there is no specific code to handle removable media, so it is better to
use the change or eject monitor commands to change or eject media.

Hard disks

Hard disks can be used with the syntax: \\.\PhysicalDriveN where N is the
drive number (0 is the first hard disk). /dev/hda is supported as an alias to
the first hard disk drive \\.\PhysicalDrive0.

WARNING: unless you know what you do, it is better to only make READ-
ONLY accesses to the hard disk otherwise you may corrupt your host data
(use the -snapshot command line so that the modifications are written in a
temporary file).

2.8.7.3 Mac OS X

/dev/cdrom is an alias to the first CDROM.

Currently there is no specific code to handle removable media, so it is better to use the
change or eject monitor commands to change or eject media.

2.8.8 Virtual FAT disk images

QEMU can automatically create a virtual FAT disk image from a directory tree. In order
to use it, just type:

qemu-system-i386 linux.img -hdb fat:/my_directory

Then you access access to all the files in the /my_directory directory without having to
copy them in a disk image or to export them via SAMBA or NFS. The default access is
read-only.

Floppies can be emulated with the :floppy: option:

qemu-system-i386 linux.img -fda fat:floppy:/my_directory

A read/write support is available for testing (beta stage) with the :rw: option:

qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory

What you should never do:

• use non-ASCII filenames ;

• use "-snapshot" together with ":rw:" ;

• expect it to work when loadvm’ing ;

• write to the FAT directory on the host system while accessing it with the guest system.

2.8.9 NBD access

QEMU can access directly to block device exported using the Network Block Device pro-
tocol.

qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/

If the NBD server is located on the same host, you can use an unix socket instead of an
inet socket:

qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket

Chapter 2: QEMU PC System emulator 111

In this case, the block device must be exported using qemu-nbd:

qemu-nbd --socket=/tmp/my_socket my_disk.qcow2

The use of qemu-nbd allows sharing of a disk between several guests:

qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2

and then you can use it with two guests:

qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket

qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket

If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU’s own
embedded NBD server), you must specify an export name in the URI:

qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst

qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst

The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is also
available. Here are some example of the older syntax:

qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024

qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket

qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst

2.8.10 Sheepdog disk images

Sheepdog is a distributed storage system for QEMU. It provides highly available block level
storage volumes that can be attached to QEMU-based virtual machines.

You can create a Sheepdog disk image with the command:

qemu-img create sheepdog:///image size

where image is the Sheepdog image name and size is its size.

To import the existing filename to Sheepdog, you can use a convert command.

qemu-img convert filename sheepdog:///image

You can boot from the Sheepdog disk image with the command:

qemu-system-i386 sheepdog:///image

You can also create a snapshot of the Sheepdog image like qcow2.

qemu-img snapshot -c tag sheepdog:///image

where tag is a tag name of the newly created snapshot.

To boot from the Sheepdog snapshot, specify the tag name of the snapshot.

qemu-system-i386 sheepdog:///image#tag

You can create a cloned image from the existing snapshot.

qemu-img create -b sheepdog:///base#tag sheepdog:///image

where base is an image name of the source snapshot and tag is its tag name.

You can use an unix socket instead of an inet socket:

qemu-system-i386 sheepdog+unix:///image?socket=path

If the Sheepdog daemon doesn’t run on the local host, you need to specify one of the
Sheepdog servers to connect to.

qemu-img create sheepdog://hostname:port/image size

qemu-system-i386 sheepdog://hostname:port/image

Chapter 2: QEMU PC System emulator 112

2.8.11 iSCSI LUNs

iSCSI is a popular protocol used to access SCSI devices across a computer network.

There are two different ways iSCSI devices can be used by QEMU.

The first method is to mount the iSCSI LUN on the host, and make it appear as any other
ordinary SCSI device on the host and then to access this device as a /dev/sd device from
QEMU. How to do this differs between host OSes.

The second method involves using the iSCSI initiator that is built into QEMU. This provides
a mechanism that works the same way regardless of which host OS you are running QEMU
on. This section will describe this second method of using iSCSI together with QEMU.

In QEMU, iSCSI devices are described using special iSCSI URLs

URL syntax:

iscsi://[<username>[%<password>]@]<host>[:<port>]/<target-iqn-name>/<lun>

Username and password are optional and only used if your target is set up using CHAP
authentication for access control. Alternatively the username and password can also be set
via environment variables to have these not show up in the process list

export LIBISCSI_CHAP_USERNAME=<username>

export LIBISCSI_CHAP_PASSWORD=<password>

iscsi://<host>/<target-iqn-name>/<lun>

Various session related parameters can be set via special options, either in a configuration
file provided via ’-readconfig’ or directly on the command line.

If the initiator-name is not specified qemu will use a default name of ’iqn.2008-11.org.linux-
kvm[:<uuid>’] where <uuid> is the UUID of the virtual machine. If the UUID is not specified
qemu will use ’iqn.2008-11.org.linux-kvm[:<name>’] where <name> is the name of the virtual
machine.

Setting a specific initiator name to use when logging in to the target

-iscsi initiator-name=iqn.qemu.test:my-initiator

Controlling which type of header digest to negotiate with the target

-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE

These can also be set via a configuration file

[iscsi]

user = "CHAP username"

password = "CHAP password"

initiator-name = "iqn.qemu.test:my-initiator"

header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE

header-digest = "CRC32C"

Setting the target name allows different options for different targets

[iscsi "iqn.target.name"]

user = "CHAP username"

password = "CHAP password"

initiator-name = "iqn.qemu.test:my-initiator"

header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE

header-digest = "CRC32C"

Chapter 2: QEMU PC System emulator 113

Howto use a configuration file to set iSCSI configuration options:

cat >iscsi.conf <<EOF

[iscsi]

user = "me"

password = "my password"

initiator-name = "iqn.qemu.test:my-initiator"

header-digest = "CRC32C"

EOF

qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \

-readconfig iscsi.conf

How to set up a simple iSCSI target on loopback and access it via QEMU:

This example shows how to set up an iSCSI target with one CDROM and one DISK

using the Linux STGT software target. This target is available on Red Hat based

systems as the package ’scsi-target-utils’.

tgtd --iscsi portal=127.0.0.1:3260

tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test

tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \

-b /IMAGES/disk.img --device-type=disk

tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \

-b /IMAGES/cd.iso --device-type=cd

tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL

qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \

-boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \

-cdrom iscsi://127.0.0.1/iqn.qemu.test/2

2.8.12 GlusterFS disk images

GlusterFS is a user space distributed file system.

You can boot from the GlusterFS disk image with the command:

URI:

qemu-system-x86_64 -drive file=gluster[+type]://[host[:port]]/volume/path

[?socket=...][,file.debug=9][,file.logfile=...]

JSON:

qemu-system-x86_64 ’json:{"driver":"qcow2",

"file":{"driver":"gluster",

"volume":"testvol","path":"a.img","debug":9,"logfile":"...",

"server":[{"type":"tcp","host":"...","port":"..."},

{"type":"unix","socket":"..."}]}}’

gluster is the protocol.

type specifies the transport type used to connect to gluster management daemon (glusterd).
Valid transport types are tcp and unix. In the URI form, if a transport type isn’t specified,
then tcp type is assumed.

Chapter 2: QEMU PC System emulator 114

host specifies the server where the volume file specification for the given volume resides.
This can be either a hostname or an ipv4 address. If transport type is unix, then host field
should not be specified. Instead socket field needs to be populated with the path to unix
domain socket.

port is the port number on which glusterd is listening. This is optional and if not specified,
it defaults to port 24007. If the transport type is unix, then port should not be specified.

volume is the name of the gluster volume which contains the disk image.

path is the path to the actual disk image that resides on gluster volume.

debug is the logging level of the gluster protocol driver. Debug levels are 0-9, with 9 being
the most verbose, and 0 representing no debugging output. The default level is 4. The
current logging levels defined in the gluster source are 0 - None, 1 - Emergency, 2 - Alert,
3 - Critical, 4 - Error, 5 - Warning, 6 - Notice, 7 - Info, 8 - Debug, 9 - Trace

logfile is a commandline option to mention log file path which helps in logging to the
specified file and also help in persisting the gfapi logs. The default is stderr.

You can create a GlusterFS disk image with the command:

qemu-img create gluster://host/volume/path size

Examples

qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img

qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img

qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img

qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img

qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img

qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img

qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket

qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img

qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img,file.debug=9,file.logfile=/var/log/qemu-gluster.log

qemu-system-x86_64 ’json:{"driver":"qcow2",

"file":{"driver":"gluster",

"volume":"testvol","path":"a.img",

"debug":9,"logfile":"/var/log/qemu-gluster.log",

"server":[{"type":"tcp","host":"1.2.3.4","port":24007},

{"type":"unix","socket":"/var/run/glusterd.socket"}]}}’

qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,

file.debug=9,file.logfile=/var/log/qemu-gluster.log,

file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,

file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket

2.8.13 Secure Shell (ssh) disk images

You can access disk images located on a remote ssh server by using the ssh protocol:

qemu-system-x86_64 -drive file=ssh://[user@]server[:port]/path[?host_key_check=host_key_check]

Alternative syntax using properties:

qemu-system-x86_64 -drive file.driver=ssh[,file.user=user],file.host=server[,file.port=port],file.path=path[,file.host_key_check=host_key_check]

ssh is the protocol.

user is the remote user. If not specified, then the local username is tried.

Chapter 2: QEMU PC System emulator 115

server specifies the remote ssh server. Any ssh server can be used, but it must implement
the sftp-server protocol. Most Unix/Linux systems should work without requiring any extra
configuration.

port is the port number on which sshd is listening. By default the standard ssh port (22)
is used.

path is the path to the disk image.

The optional host key check parameter controls how the remote host’s key is checked. The
default is yes which means to use the local .ssh/known_hosts file. Setting this to no turns
off known-hosts checking. Or you can check that the host key matches a specific fingerprint:
host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8 (sha1:
can also be used as a prefix, but note that OpenSSH tools only use MD5 to print
fingerprints).

Currently authentication must be done using ssh-agent. Other authentication methods may
be supported in future.

Note: Many ssh servers do not support an fsync-style operation. The ssh driver cannot
guarantee that disk flush requests are obeyed, and this causes a risk of disk corruption if the
remote server or network goes down during writes. The driver will print a warning when
fsync is not supported:

warning: ssh server ssh.example.com:22 does not support fsync

With sufficiently new versions of libssh and OpenSSH, fsync is supported.

2.8.14 NVMe disk images

NVM Express (NVMe) storage controllers can be accessed directly by a userspace driver in
QEMU. This bypasses the host kernel file system and block layers while retaining QEMU
block layer functionalities, such as block jobs, I/O throttling, image formats, etc. Disk I/O
performance is typically higher than with -drive file=/dev/sda using either thread pool
or linux-aio.

The controller will be exclusively used by the QEMU process once started. To be able to
share storage between multiple VMs and other applications on the host, please use the file
based protocols.

Before starting QEMU, bind the host NVMe controller to the host vfio-pci driver. For
example:

modprobe vfio-pci

lspci -n -s 0000:06:0d.0

06:0d.0 0401: 1102:0002 (rev 08)

echo 0000:06:0d.0 > /sys/bus/pci/devices/0000:06:0d.0/driver/unbind

echo 1102 0002 > /sys/bus/pci/drivers/vfio-pci/new_id

qemu-system-x86_64 -drive file=nvme://host:bus:slot.func/namespace

Alternative syntax using properties:

qemu-system-x86_64 -drive file.driver=nvme,file.device=host:bus:slot.func,file.namespace=namespace

host:bus:slot.func is the NVMe controller’s PCI device address on the host.

namespace is the NVMe namespace number, starting from 1.

Chapter 2: QEMU PC System emulator 116

2.8.15 Disk image file locking

By default, QEMU tries to protect image files from unexpected concurrent access, as long
as it’s supported by the block protocol driver and host operating system. If multiple QEMU
processes (including QEMU emulators and utilities) try to open the same image with con-
flicting accessing modes, all but the first one will get an error.

This feature is currently supported by the file protocol on Linux with the Open File De-
scriptor (OFD) locking API, and can be configured to fall back to POSIX locking if the
POSIX host doesn’t support Linux OFD locking.

To explicitly enable image locking, specify "locking=on" in the file protocol driver options.
If OFD locking is not possible, a warning will be printed and the POSIX locking API will be
used. In this case there is a risk that the lock will get silently lost when doing hot plugging
and block jobs, due to the shortcomings of the POSIX locking API.

QEMU transparently handles lock handover during shared storage migration. For shared
virtual disk images between multiple VMs, the "share-rw" device option should be used.

By default, the guest has exclusive write access to its disk image. If the guest can safely
share the disk image with other writers the -device ...,share-rw=on parameter can be
used. This is only safe if the guest is running software, such as a cluster file system, that
coordinates disk accesses to avoid corruption.

Note that share-rw=on only declares the guest’s ability to share the disk. Some QEMU
features, such as image file formats, require exclusive write access to the disk image and
this is unaffected by the share-rw=on option.

Alternatively, locking can be fully disabled by "locking=off" block device option. In the
command line, the option is usually in the form of "file.locking=off" as the protocol driver
is normally placed as a "file" child under a format driver. For example:

-blockdev driver=qcow2,file.filename=/path/to/image,file.locking=off,file.driver=file

To check if image locking is active, check the output of the "lslocks" command on host and
see if there are locks held by the QEMU process on the image file. More than one byte
could be locked by the QEMU instance, each byte of which reflects a particular permission
that is acquired or protected by the running block driver.

2.9 Network emulation

QEMU can simulate several network cards (e.g. PCI or ISA cards on the PC target) and
can connect them to a network backend on the host or an emulated hub. The various host
network backends can either be used to connect the NIC of the guest to a real network
(e.g. by using a TAP devices or the non-privileged user mode network stack), or to other
guest instances running in another QEMU process (e.g. by using the socket host network
backend).

2.9.1 Using TAP network interfaces

This is the standard way to connect QEMU to a real network. QEMU adds a virtual
network device on your host (called tapN), and you can then configure it as if it was a real
ethernet card.

Chapter 2: QEMU PC System emulator 117

2.9.1.1 Linux host

As an example, you can download the linux-test-xxx.tar.gz archive and copy the script
qemu-ifup in /etc and configure properly sudo so that the command ifconfig contained
in qemu-ifup can be executed as root. You must verify that your host kernel supports the
TAP network interfaces: the device /dev/net/tun must be present.

See Section 2.3 [sec invocation], page 3, to have examples of command lines using the TAP
network interfaces.

2.9.1.2 Windows host

There is a virtual ethernet driver for Windows 2000/XP systems, called TAP-Win32. But
it is not included in standard QEMU for Windows, so you will need to get it separately. It
is part of OpenVPN package, so download OpenVPN from : https://openvpn.net/.

2.9.2 Using the user mode network stack

By using the option -net user (default configuration if no -net option is specified), QEMU
uses a completely user mode network stack (you don’t need root privilege to use the virtual
network). The virtual network configuration is the following:

guest (10.0.2.15) <------> Firewall/DHCP server <-----> Internet

| (10.0.2.2)

|

----> DNS server (10.0.2.3)

|

----> SMB server (10.0.2.4)

The QEMU VM behaves as if it was behind a firewall which blocks all incoming connections.
You can use a DHCP client to automatically configure the network in the QEMU VM. The
DHCP server assign addresses to the hosts starting from 10.0.2.15.

In order to check that the user mode network is working, you can ping the address 10.0.2.2
and verify that you got an address in the range 10.0.2.x from the QEMU virtual DHCP
server.

Note that ICMP traffic in general does not work with user mode networking. ping, aka.
ICMP echo, to the local router (10.0.2.2) shall work, however. If you’re using QEMU on
Linux >= 3.0, it can use unprivileged ICMP ping sockets to allow ping to the Internet. The
host admin has to set the ping group range in order to grant access to those sockets. To
allow ping for GID 100 (usually users group):

echo 100 100 > /proc/sys/net/ipv4/ping_group_range

When using the built-in TFTP server, the router is also the TFTP server.

When using the ’-netdev user,hostfwd=...’ option, TCP or UDP connections can be
redirected from the host to the guest. It allows for example to redirect X11, telnet or SSH
connections.

2.9.3 Hubs

QEMU can simulate several hubs. A hub can be thought of as a virtual connection between
several network devices. These devices can be for example QEMU virtual ethernet cards or

https://openvpn.net/

Chapter 2: QEMU PC System emulator 118

virtual Host ethernet devices (TAP devices). You can connect guest NICs or host network
backends to such a hub using the -netdev hubport or -nic hubport options. The legacy
-net option also connects the given device to the emulated hub with ID 0 (i.e. the default
hub) unless you specify a netdev with -net nic,netdev=xxx here.

2.9.4 Connecting emulated networks between QEMU instances

Using the -netdev socket (or -nic socket or -net socket) option, it is possible to create
emulated networks that span several QEMU instances. See the description of the -netdev
socket option in the Section 2.3 [Invocation chapter], page 3, to have a basic example.

2.10 Other Devices

2.10.1 Inter-VM Shared Memory device

On Linux hosts, a shared memory device is available. The basic syntax is:

qemu-system-x86_64 -device ivshmem-plain,memdev=hostmem

where hostmem names a host memory backend. For a POSIX shared memory backend, use
something like

-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=hostmem

If desired, interrupts can be sent between guest VMs accessing the same shared memory
region. Interrupt support requires using a shared memory server and using a chardev socket
to connect to it. The code for the shared memory server is qemu.git/contrib/ivshmem-
server. An example syntax when using the shared memory server is:

First start the ivshmem server once and for all

ivshmem-server -p pidfile -S path -m shm-name -l shm-size -n vectors

Then start your qemu instances with matching arguments

qemu-system-x86_64 -device ivshmem-doorbell,vectors=vectors,chardev=id

-chardev socket,path=path,id=id

When using the server, the guest will be assigned a VM ID (>=0) that allows guests using
the same server to communicate via interrupts. Guests can read their VM ID from a device
register (see ivshmem-spec.txt).

2.10.1.1 Migration with ivshmem

With device property master=on, the guest will copy the shared memory on migration to
the destination host. With master=off, the guest will not be able to migrate with the
device attached. In the latter case, the device should be detached and then reattached after
migration using the PCI hotplug support.

At most one of the devices sharing the same memory can be master. The master must
complete migration before you plug back the other devices.

2.10.1.2 ivshmem and hugepages

Instead of specifying the <shm size> using POSIX shm, you may specify a memory backend
that has hugepage support:

qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1

Chapter 2: QEMU PC System emulator 119

-device ivshmem-plain,memdev=mb1

ivshmem-server also supports hugepages mount points with the -m memory path argument.

2.11 Direct Linux Boot

This section explains how to launch a Linux kernel inside QEMU without having to make
a full bootable image. It is very useful for fast Linux kernel testing.

The syntax is:

qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"

Use -kernel to provide the Linux kernel image and -append to give the kernel command
line arguments. The -initrd option can be used to provide an INITRD image.

When using the direct Linux boot, a disk image for the first hard disk hda is required
because its boot sector is used to launch the Linux kernel.

If you do not need graphical output, you can disable it and redirect the virtual serial port
and the QEMU monitor to the console with the -nographic option. The typical command
line is:

qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \

-append "root=/dev/hda console=ttyS0" -nographic

Use Ctrl-a c to switch between the serial console and the monitor (see Section 2.4 [pc-
sys keys], page 66).

2.12 USB emulation

QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can plug
virtual USB devices or real host USB devices (only works with certain host operating
systems). QEMU will automatically create and connect virtual USB hubs as necessary to
connect multiple USB devices.

2.12.1 Connecting USB devices

USB devices can be connected with the -device usb-... command line option or the
device_add monitor command. Available devices are:

usb-mouse

Virtual Mouse. This will override the PS/2 mouse emulation when activated.

usb-tablet

Pointer device that uses absolute coordinates (like a touchscreen). This means
QEMU is able to report the mouse position without having to grab the mouse.
Also overrides the PS/2 mouse emulation when activated.

usb-storage,drive=drive_id

Mass storage device backed by drive id (see Section 2.8 [disk images], page 88)

usb-uas USB attached SCSI device, see usb-storage.txt (https://git.qemu.org/ ?
p=qemu.git;a=blob_plain;f=docs/usb-storage.txt) for details

usb-bot Bulk-only transport storage device, see usb-storage.txt (https://git.qemu.
org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt) for details here,
too

https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt
https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt
https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt
https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt

Chapter 2: QEMU PC System emulator 120

usb-mtp,rootdir=dir

Media transfer protocol device, using dir as root of the file tree that is presented
to the guest.

usb-host,hostbus=bus,hostaddr=addr

Pass through the host device identified by bus and addr

usb-host,vendorid=vendor,productid=product

Pass through the host device identified by vendor and product ID

usb-wacom-tablet

Virtual Wacom PenPartner tablet. This device is similar to the tablet above
but it can be used with the tslib library because in addition to touch coordinates
it reports touch pressure.

usb-kbd Standard USB keyboard. Will override the PS/2 keyboard (if present).

usb-serial,chardev=id

Serial converter. This emulates an FTDI FT232BM chip connected to host
character device id.

usb-braille,chardev=id

Braille device. This will use BrlAPI to display the braille output on a real or
fake device referenced by id.

usb-net[,netdev=id]

Network adapter that supports CDC ethernet and RNDIS protocols. id specifies
a netdev defined with -netdev ...,id=id. For instance, user-mode networking
can be used with

qemu-system-i386 [...] -netdev user,id=net0 -device usb-net,netdev=net0

usb-ccid Smartcard reader device

usb-audio

USB audio device

usb-bt-dongle

Bluetooth dongle for the transport layer of HCI. It is connected to HCI scat-
ternet 0 by default (corresponds to -bt hci,vlan=0). Note that the syntax
for the -device usb-bt-dongle option is not as useful yet as it was with the
legacy -usbdevice option. So to configure an USB bluetooth device, you might
need to use "-usbdevice bt[:hci-type]" instead. This configures a bluetooth
dongle whose type is specified in the same format as with the -bt hci option,
see [allowed HCI types], page 41. If no type is given, the HCI logic corresponds
to -bt hci,vlan=0. This USB device implements the USB Transport Layer of
HCI. Example usage:

qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3

2.12.2 Using host USB devices on a Linux host

WARNING: this is an experimental feature. QEMU will slow down when using it. USB
devices requiring real time streaming (i.e. USB Video Cameras) are not supported yet.

Chapter 2: QEMU PC System emulator 121

1. If you use an early Linux 2.4 kernel, verify that no Linux driver is actually using the
USB device. A simple way to do that is simply to disable the corresponding kernel
module by renaming it from mydriver.o to mydriver.o.disabled.

2. Verify that /proc/bus/usb is working (most Linux distributions should enable it by
default). You should see something like that:

ls /proc/bus/usb

001 devices drivers

3. Since only root can access to the USB devices directly, you can either launch QEMU
as root or change the permissions of the USB devices you want to use. For testing, the
following suffices:

chown -R myuid /proc/bus/usb

4. Launch QEMU and do in the monitor:

info usbhost

Device 1.2, speed 480 Mb/s

Class 00: USB device 1234:5678, USB DISK

You should see the list of the devices you can use (Never try to use hubs, it won’t
work).

5. Add the device in QEMU by using:

device_add usb-host,vendorid=0x1234,productid=0x5678

Normally the guest OS should report that a new USB device is plugged. You can use
the option -device usb-host,... to do the same.

6. Now you can try to use the host USB device in QEMU.

When relaunching QEMU, you may have to unplug and plug again the USB device to make
it work again (this is a bug).

2.13 VNC security

The VNC server capability provides access to the graphical console of the guest VM across
the network. This has a number of security considerations depending on the deployment
scenarios.

2.13.1 Without passwords

The simplest VNC server setup does not include any form of authentication. For this setup
it is recommended to restrict it to listen on a UNIX domain socket only. For example

qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc

This ensures that only users on local box with read/write access to that path can access
the VNC server. To securely access the VNC server from a remote machine, a combination
of netcat+ssh can be used to provide a secure tunnel.

2.13.2 With passwords

The VNC protocol has limited support for password based authentication. Since the proto-
col limits passwords to 8 characters it should not be considered to provide high security. The
password can be fairly easily brute-forced by a client making repeat connections. For this
reason, a VNC server using password authentication should be restricted to only listen on

Chapter 2: QEMU PC System emulator 122

the loopback interface or UNIX domain sockets. Password authentication is not supported
when operating in FIPS 140-2 compliance mode as it requires the use of the DES cipher.
Password authentication is requested with the password option, and then once QEMU is
running the password is set with the monitor. Until the monitor is used to set the password
all clients will be rejected.

qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio

(qemu) change vnc password

Password: ********

(qemu)

2.13.3 With x509 certificates

The QEMU VNC server also implements the VeNCrypt extension allowing use of TLS for
encryption of the session, and x509 certificates for authentication. The use of x509 certifi-
cates is strongly recommended, because TLS on its own is susceptible to man-in-the-middle
attacks. Basic x509 certificate support provides a secure session, but no authentication.
This allows any client to connect, and provides an encrypted session.

qemu-system-i386 [...OPTIONS...] \

-object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=no \

-vnc :1,tls-creds=tls0 -monitor stdio

In the above example /etc/pki/qemu should contain at least three files, ca-cert.pem,
server-cert.pem and server-key.pem. Unprivileged users will want to use a private
directory, for example $HOME/.pki/qemu. NB the server-key.pem file should be protected
with file mode 0600 to only be readable by the user owning it.

2.13.4 With x509 certificates and client verification

Certificates can also provide a means to authenticate the client connecting. The server
will request that the client provide a certificate, which it will then validate against the CA
certificate. This is a good choice if deploying in an environment with a private internal
certificate authority. It uses the same syntax as previously, but with verify-peer set to
yes instead.

qemu-system-i386 [...OPTIONS...] \

-object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \

-vnc :1,tls-creds=tls0 -monitor stdio

2.13.5 With x509 certificates, client verification and passwords

Finally, the previous method can be combined with VNC password authentication to provide
two layers of authentication for clients.

qemu-system-i386 [...OPTIONS...] \

-object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \

-vnc :1,tls-creds=tls0,password -monitor stdio

(qemu) change vnc password

Password: ********

(qemu)

Chapter 2: QEMU PC System emulator 123

2.13.6 With SASL authentication

The SASL authentication method is a VNC extension, that provides an easily extendable,
pluggable authentication method. This allows for integration with a wide range of authenti-
cation mechanisms, such as PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys
and more. The strength of the authentication depends on the exact mechanism configured.
If the chosen mechanism also provides a SSF layer, then it will encrypt the datastream as
well.

Refer to the later docs on how to choose the exact SASL mechanism used for authentication,
but assuming use of one supporting SSF, then QEMU can be launched with:

qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio

2.13.7 With x509 certificates and SASL authentication

If the desired SASL authentication mechanism does not supported SSF layers, then it is
strongly advised to run it in combination with TLS and x509 certificates. This provides
securely encrypted data stream, avoiding risk of compromising of the security credentials.
This can be enabled, by combining the ’sasl’ option with the aforementioned TLS + x509
options:

qemu-system-i386 [...OPTIONS...] \

-object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \

-vnc :1,tls-creds=tls0,sasl -monitor stdio

2.13.8 Configuring SASL mechanisms

The following documentation assumes use of the Cyrus SASL implementation on a Linux
host, but the principles should apply to any other SASL implementation or host. When
SASL is enabled, the mechanism configuration will be loaded from system default SASL
service config /etc/sasl2/qemu.conf. If running QEMU as an unprivileged user, an envi-
ronment variable SASL CONF PATH can be used to make it search alternate locations for
the service config file.

If the TLS option is enabled for VNC, then it will provide session encryption, otherwise
the SASL mechanism will have to provide encryption. In the latter case the list of possible
plugins that can be used is drastically reduced. In fact only the GSSAPI SASL mechanism
provides an acceptable level of security by modern standards. Previous versions of QEMU
referred to the DIGEST-MD5 mechanism, however, it has multiple serious flaws described
in detail in RFC 6331 and thus should never be used any more. The SCRAM-SHA-1
mechanism provides a simple username/password auth facility similar to DIGEST-MD5,
but does not support session encryption, so can only be used in combination with TLS.

When not using TLS the recommended configuration is

mech_list: gssapi

keytab: /etc/qemu/krb5.tab

This says to use the ’GSSAPI’ mechanism with the Kerberos v5 protocol, with the
server principal stored in /etc/qemu/krb5.tab. For this to work the administrator
of your KDC must generate a Kerberos principal for the server, with a name of
’qemu/somehost.example.com@EXAMPLE.COM’ replacing ’somehost.example.com’ with
the fully qualified host name of the machine running QEMU, and ’EXAMPLE.COM’ with
the Kerberos Realm.

Chapter 2: QEMU PC System emulator 124

When using TLS, if username+password authentication is desired, then a reasonable con-
figuration is

mech_list: scram-sha-1

sasldb_path: /etc/qemu/passwd.db

The saslpasswd2 program can be used to populate the passwd.db file with accounts.

Other SASL configurations will be left as an exercise for the reader. Note that all mech-
anisms, except GSSAPI, should be combined with use of TLS to ensure a secure data
channel.

2.14 TLS setup for network services

Almost all network services in QEMU have the ability to use TLS for session data en-
cryption, along with x509 certificates for simple client authentication. What follows is a
description of how to generate certificates suitable for usage with QEMU, and applies to
the VNC server, character devices with the TCP backend, NBD server and client, and
migration server and client.

At a high level, QEMU requires certificates and private keys to be provided in PEM for-
mat. Aside from the core fields, the certificates should include various extension data sets,
including v3 basic constraints data, key purpose, key usage and subject alt name.

The GnuTLS package includes a command called certtool which can be used to easily gen-
erate certificates and keys in the required format with expected data present. Alternatively
a certificate management service may be used.

At a minimum it is necessary to setup a certificate authority, and issue certificates to each
server. If using x509 certificates for authentication, then each client will also need to be
issued a certificate.

Assuming that the QEMU network services will only ever be exposed to clients on a private
intranet, there is no need to use a commercial certificate authority to create certificates. A
self-signed CA is sufficient, and in fact likely to be more secure since it removes the ability of
malicious 3rd parties to trick the CA into mis-issuing certs for impersonating your services.
The only likely exception where a commercial CA might be desirable is if enabling the VNC
websockets server and exposing it directly to remote browser clients. In such a case it might
be useful to use a commercial CA to avoid needing to install custom CA certs in the web
browsers.

The recommendation is for the server to keep its certificates in either /etc/pki/qemu or
for unprivileged users in $HOME/.pki/qemu.

2.14.1 Setup the Certificate Authority

This step only needs to be performed once per organization / organizational unit. First
the CA needs a private key. This key must be kept VERY secret and secure. If this key is
compromised the entire trust chain of the certificates issued with it is lost.

certtool --generate-privkey > ca-key.pem

To generate a self-signed certificate requires one core piece of information, the name of the
organization. A template file ca.info should be populated with the desired data to avoid
having to deal with interactive prompts from certtool:

cat > ca.info <<EOF

Chapter 2: QEMU PC System emulator 125

cn = Name of your organization

ca

cert_signing_key

EOF

certtool --generate-self-signed \

--load-privkey ca-key.pem

--template ca.info \

--outfile ca-cert.pem

The ca keyword in the template sets the v3 basic constraints extension to indicate this
certificate is for a CA, while cert_signing_key sets the key usage extension to indicate
this will be used for signing other keys. The generated ca-cert.pem file should be copied to
all servers and clients wishing to utilize TLS support in the VNC server. The ca-key.pem

must not be disclosed/copied anywhere except the host responsible for issuing certificates.

2.14.2 Issuing server certificates

Each server (or host) needs to be issued with a key and certificate. When connecting the
certificate is sent to the client which validates it against the CA certificate. The core pieces
of information for a server certificate are the hostnames and/or IP addresses that will be
used by clients when connecting. The hostname / IP address that the client specifies when
connecting will be validated against the hostname(s) and IP address(es) recorded in the
server certificate, and if no match is found the client will close the connection.

Thus it is recommended that the server certificate include both the fully qualified and
unqualified hostnames. If the server will have permanently assigned IP address(es), and
clients are likely to use them when connecting, they may also be included in the certificate.
Both IPv4 and IPv6 addresses are supported. Historically certificates only included 1
hostname in the CN field, however, usage of this field for validation is now deprecated.
Instead modern TLS clients will validate against the Subject Alt Name extension data,
which allows for multiple entries. In the future usage of the CN field may be discontinued
entirely, so providing SAN extension data is strongly recommended.

On the host holding the CA, create template files containing the information for each server,
and use it to issue server certificates.

cat > server-hostNNN.info <<EOF

organization = Name of your organization

cn = hostNNN.foo.example.com

dns_name = hostNNN

dns_name = hostNNN.foo.example.com

ip_address = 10.0.1.87

ip_address = 192.8.0.92

ip_address = 2620:0:cafe::87

ip_address = 2001:24::92

tls_www_server

encryption_key

signing_key

EOF

certtool --generate-privkey > server-hostNNN-key.pem

certtool --generate-certificate \

Chapter 2: QEMU PC System emulator 126

--load-ca-certificate ca-cert.pem \

--load-ca-privkey ca-key.pem \

--load-privkey server-hostNNN-key.pem \

--template server-hostNNN.info \

--outfile server-hostNNN-cert.pem

The dns_name and ip_address fields in the template are setting the subject alt name
extension data. The tls_www_server keyword is the key purpose extension to indicate
this certificate is intended for usage in a web server. Although QEMU network services
are not in fact HTTP servers (except for VNC websockets), setting this key purpose is still
recommended. The encryption_key and signing_key keyword is the key usage extension
to indicate this certificate is intended for usage in the data session.

The server-hostNNN-key.pem and server-hostNNN-cert.pem files should now be securely
copied to the server for which they were generated, and renamed to server-key.pem and
server-cert.pem when added to the /etc/pki/qemu directory on the target host. The
server-key.pem file is security sensitive and should be kept protected with file mode 0600
to prevent disclosure.

2.14.3 Issuing client certificates

The QEMU x509 TLS credential setup defaults to enabling client verification using certifi-
cates, providing a simple authentication mechanism. If this default is used, each client also
needs to be issued a certificate. The client certificate contains enough metadata to uniquely
identify the client with the scope of the certificate authority. The client certificate would
typically include fields for organization, state, city, building, etc.

Once again on the host holding the CA, create template files containing the information for
each client, and use it to issue client certificates.

cat > client-hostNNN.info <<EOF

country = GB

state = London

locality = City Of London

organization = Name of your organization

cn = hostNNN.foo.example.com

tls_www_client

encryption_key

signing_key

EOF

certtool --generate-privkey > client-hostNNN-key.pem

certtool --generate-certificate \

--load-ca-certificate ca-cert.pem \

--load-ca-privkey ca-key.pem \

--load-privkey client-hostNNN-key.pem \

--template client-hostNNN.info \

--outfile client-hostNNN-cert.pem

The subject alt name extension data is not required for clients, so the the dns_name and
ip_address fields are not included. The tls_www_client keyword is the key purpose
extension to indicate this certificate is intended for usage in a web client. Although QEMU
network clients are not in fact HTTP clients, setting this key purpose is still recommended.

Chapter 2: QEMU PC System emulator 127

The encryption_key and signing_key keyword is the key usage extension to indicate this
certificate is intended for usage in the data session.

The client-hostNNN-key.pem and client-hostNNN-cert.pem files should now be securely
copied to the client for which they were generated, and renamed to client-key.pem and
client-cert.pem when added to the /etc/pki/qemu directory on the target host. The
client-key.pem file is security sensitive and should be kept protected with file mode 0600
to prevent disclosure.

If a single host is going to be using TLS in both a client and server role, it is possible to
create a single certificate to cover both roles. This would be quite common for the migration
and NBD services, where a QEMU process will be started by accepting a TLS protected
incoming migration, and later itself be migrated out to another host. To generate a single
certificate, simply include the template data from both the client and server instructions in
one.

cat > both-hostNNN.info <<EOF

country = GB

state = London

locality = City Of London

organization = Name of your organization

cn = hostNNN.foo.example.com

dns_name = hostNNN

dns_name = hostNNN.foo.example.com

ip_address = 10.0.1.87

ip_address = 192.8.0.92

ip_address = 2620:0:cafe::87

ip_address = 2001:24::92

tls_www_server

tls_www_client

encryption_key

signing_key

EOF

certtool --generate-privkey > both-hostNNN-key.pem

certtool --generate-certificate \

--load-ca-certificate ca-cert.pem \

--load-ca-privkey ca-key.pem \

--load-privkey both-hostNNN-key.pem \

--template both-hostNNN.info \

--outfile both-hostNNN-cert.pem

When copying the PEM files to the target host, save them twice, once as server-cert.pem
and server-key.pem, and again as client-cert.pem and client-key.pem.

2.14.4 TLS x509 credential configuration

QEMU has a standard mechanism for loading x509 credentials that will be used for network
services and clients. It requires specifying the tls-creds-x509 class name to the --object
command line argument for the system emulators. Each set of credentials loaded should be
given a unique string identifier via the id parameter. A single set of TLS credentials can
be used for multiple network backends, so VNC, migration, NBD, character devices can

Chapter 2: QEMU PC System emulator 128

all share the same credentials. Note, however, that credentials for use in a client endpoint
must be loaded separately from those used in a server endpoint.

When specifying the object, the dir parameters specifies which directory contains the
credential files. This directory is expected to contain files with the names mentioned
previously, ca-cert.pem, server-key.pem, server-cert.pem, client-key.pem and
client-cert.pem as appropriate. It is also possible to include a set of pre-generated
Diffie-Hellman (DH) parameters in a file dh-params.pem, which can be created using
the certtool --generate-dh-params command. If omitted, QEMU will dynamically
generate DH parameters when loading the credentials.

The endpoint parameter indicates whether the credentials will be used for a network client
or server, and determines which PEM files are loaded.

The verify parameter determines whether x509 certificate validation should be performed.
This defaults to enabled, meaning clients will always validate the server hostname against
the certificate subject alt name fields and/or CN field. It also means that servers will request
that clients provide a certificate and validate them. Verification should never be turned off
for client endpoints, however, it may be turned off for server endpoints if an alternative
mechanism is used to authenticate clients. For example, the VNC server can use SASL to
authenticate clients instead.

To load server credentials with client certificate validation enabled

$QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server

while to load client credentials use

$QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=client

Network services which support TLS will all have a tls-creds parameter which expects
the ID of the TLS credentials object. For example with VNC:

$QEMU -vnc 0.0.0.0:0,tls-creds=tls0

2.14.5 TLS Pre-Shared Keys (PSK)

Instead of using certificates, you may also use TLS Pre-Shared Keys (TLS-PSK). This can
be simpler to set up than certificates but is less scalable.

Use the GnuTLS psktool program to generate a keys.psk file containing one or more
usernames and random keys:

mkdir -m 0700 /tmp/keys

psktool -u rich -p /tmp/keys/keys.psk

TLS-enabled servers such as qemu-nbd can use this directory like so:

qemu-nbd \

-t -x / \

--object tls-creds-psk,id=tls0,endpoint=server,dir=/tmp/keys \

--tls-creds tls0 \

image.qcow2

When connecting from a qemu-based client you must specify the directory containing
keys.psk and an optional username (defaults to “qemu”):

qemu-img info \

--object tls-creds-psk,id=tls0,dir=/tmp/keys,username=rich,endpoint=client \

Chapter 2: QEMU PC System emulator 129

--image-opts \

file.driver=nbd,file.host=localhost,file.port=10809,file.tls-creds=tls0,file.export=/

2.15 GDB usage

QEMU has a primitive support to work with gdb, so that you can do ’Ctrl-C’ while the
virtual machine is running and inspect its state.

In order to use gdb, launch QEMU with the ’-s’ option. It will wait for a gdb connection:

qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \

-append "root=/dev/hda"

Connected to host network interface: tun0

Waiting gdb connection on port 1234

Then launch gdb on the ’vmlinux’ executable:

> gdb vmlinux

In gdb, connect to QEMU:

(gdb) target remote localhost:1234

Then you can use gdb normally. For example, type ’c’ to launch the kernel:

(gdb) c

Here are some useful tips in order to use gdb on system code:

1. Use info reg to display all the CPU registers.

2. Use x/10i $eip to display the code at the PC position.

3. Use set architecture i8086 to dump 16 bit code. Then use x/10i $cs*16+$eip to
dump the code at the PC position.

Advanced debugging options:

The default single stepping behavior is step with the IRQs and timer service routines off.
It is set this way because when gdb executes a single step it expects to advance beyond the
current instruction. With the IRQs and timer service routines on, a single step might jump
into the one of the interrupt or exception vectors instead of executing the current instruction.
This means you may hit the same breakpoint a number of times before executing the
instruction gdb wants to have executed. Because there are rare circumstances where you
want to single step into an interrupt vector the behavior can be controlled from GDB. There
are three commands you can query and set the single step behavior:

maintenance packet qqemu.sstepbits

This will display the MASK bits used to control the single stepping IE:

(gdb) maintenance packet qqemu.sstepbits

sending: "qqemu.sstepbits"

received: "ENABLE=1,NOIRQ=2,NOTIMER=4"

maintenance packet qqemu.sstep

This will display the current value of the mask used when single stepping IE:

(gdb) maintenance packet qqemu.sstep

sending: "qqemu.sstep"

received: "0x7"

Chapter 2: QEMU PC System emulator 130

maintenance packet Qqemu.sstep=HEX_VALUE

This will change the single step mask, so if wanted to enable IRQs on the single
step, but not timers, you would use:

(gdb) maintenance packet Qqemu.sstep=0x5

sending: "qemu.sstep=0x5"

received: "OK"

2.16 Target OS specific information

2.16.1 Linux

To have access to SVGA graphic modes under X11, use the vesa or the cirrus X11 driver.
For optimal performances, use 16 bit color depth in the guest and the host OS.

When using a 2.6 guest Linux kernel, you should add the option clock=pit on the kernel
command line because the 2.6 Linux kernels make very strict real time clock checks by
default that QEMU cannot simulate exactly.

When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is not activated because
QEMU is slower with this patch. The QEMU Accelerator Module is also much slower in this
case. Earlier Fedora Core 3 Linux kernel (< 2.6.9-1.724 FC3) were known to incorporate
this patch by default. Newer kernels don’t have it.

2.16.2 Windows

If you have a slow host, using Windows 95 is better as it gives the best speed. Windows
2000 is also a good choice.

2.16.2.1 SVGA graphic modes support

QEMU emulates a Cirrus Logic GD5446 Video card. All Windows versions starting from
Windows 95 should recognize and use this graphic card. For optimal performances, use 16
bit color depth in the guest and the host OS.

If you are using Windows XP as guest OS and if you want to use high resolution modes
which the Cirrus Logic BIOS does not support (i.e. >= 1280x1024x16), then you should
use the VESA VBE virtual graphic card (option -std-vga).

2.16.2.2 CPU usage reduction

Windows 9x does not correctly use the CPU HLT instruction. The result is that it takes
host CPU cycles even when idle. You can install the utility from https://web.archive.

org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip to
solve this problem. Note that no such tool is needed for NT, 2000 or XP.

2.16.2.3 Windows 2000 disk full problem

Windows 2000 has a bug which gives a disk full problem during its installation. When
installing it, use the -win2k-hack QEMU option to enable a specific workaround. After
Windows 2000 is installed, you no longer need this option (this option slows down the IDE
transfers).

https://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip
https://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip

Chapter 2: QEMU PC System emulator 131

2.16.2.4 Windows 2000 shutdown

Windows 2000 cannot automatically shutdown in QEMU although Windows 98 can. It
comes from the fact that Windows 2000 does not automatically use the APM driver provided
by the BIOS.

In order to correct that, do the following (thanks to Struan Bartlett): go to the Control
Panel => Add/Remove Hardware & Next => Add/Troubleshoot a device => Add a new
device & Next => No, select the hardware from a list & Next => NT Apm/Legacy Support
& Next => Next (again) a few times. Now the driver is installed and Windows 2000 now
correctly instructs QEMU to shutdown at the appropriate moment.

2.16.2.5 Share a directory between Unix and Windows

See Section 2.3 [sec invocation], page 3, about the help of the option ’-netdev

user,smb=...’.

2.16.2.6 Windows XP security problem

Some releases of Windows XP install correctly but give a security error when booting:

A problem is preventing Windows from accurately checking the

license for this computer. Error code: 0x800703e6.

The workaround is to install a service pack for XP after a boot in safe mode. Then reboot,
and the problem should go away. Since there is no network while in safe mode, its recom-
mended to download the full installation of SP1 or SP2 and transfer that via an ISO or
using the vvfat block device ("-hdb fat:directory which holds the SP").

2.16.3 MS-DOS and FreeDOS

2.16.3.1 CPU usage reduction

DOS does not correctly use the CPU HLT instruction. The result is that it takes host
CPU cycles even when idle. You can install the utility from https://web.archive.org/

web/20051222085335/http://www.vmware.com/software/dosidle210.zip to solve this
problem.

https://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip
https://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip

132

3 QEMU System emulator for non PC targets

QEMU is a generic emulator and it emulates many non PC machines. Most of the options
are similar to the PC emulator. The differences are mentioned in the following sections.

3.1 PowerPC System emulator

Use the executable qemu-system-ppc to simulate a complete PREP or PowerMac PowerPC
system.

QEMU emulates the following PowerMac peripherals:

− UniNorth or Grackle PCI Bridge

− PCI VGA compatible card with VESA Bochs Extensions

− 2 PMAC IDE interfaces with hard disk and CD-ROM support

− NE2000 PCI adapters

− Non Volatile RAM

− VIA-CUDA with ADB keyboard and mouse.

QEMU emulates the following PREP peripherals:

− PCI Bridge

− PCI VGA compatible card with VESA Bochs Extensions

− 2 IDE interfaces with hard disk and CD-ROM support

− Floppy disk

− NE2000 network adapters

− Serial port

− PREP Non Volatile RAM

− PC compatible keyboard and mouse.

QEMU uses the Open Hack’Ware Open Firmware Compatible BIOS.

Since version 0.9.1, QEMU uses OpenBIOS https://www.openbios.org/ for the g3beige
and mac99 PowerMac machines. OpenBIOS is a free (GPL v2) portable firmware implemen-
tation. The goal is to implement a 100% IEEE 1275-1994 (referred to as Open Firmware)
compliant firmware.

The following options are specific to the PowerPC emulation:

-g WxH[xDEPTH]

Set the initial VGA graphic mode. The default is 800x600x32.

-prom-env string

Set OpenBIOS variables in NVRAM, for example:

qemu-system-ppc -prom-env ’auto-boot?=false’ \

-prom-env ’boot-device=hd:2,\yaboot’ \

-prom-env ’boot-args=conf=hd:2,\yaboot.conf’

These variables are not used by Open Hack’Ware.

https://www.openbios.org/

Chapter 3: QEMU System emulator for non PC targets 133

3.2 Sparc32 System emulator

Use the executable qemu-system-sparc to simulate the following Sun4m architecture ma-
chines:

− SPARCstation 4

− SPARCstation 5

− SPARCstation 10

− SPARCstation 20

− SPARCserver 600MP

− SPARCstation LX

− SPARCstation Voyager

− SPARCclassic

− SPARCbook

The emulation is somewhat complete. SMP up to 16 CPUs is supported, but Linux limits
the number of usable CPUs to 4.

QEMU emulates the following sun4m peripherals:

− IOMMU

− TCX or cgthree Frame buffer

− Lance (Am7990) Ethernet

− Non Volatile RAM M48T02/M48T08

− Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard and power/reset
logic

− ESP SCSI controller with hard disk and CD-ROM support

− Floppy drive (not on SS-600MP)

− CS4231 sound device (only on SS-5, not working yet)

The number of peripherals is fixed in the architecture. Maximum memory size depends on
the machine type, for SS-5 it is 256MB and for others 2047MB.

Since version 0.8.2, QEMU uses OpenBIOS https://www.openbios.org/. OpenBIOS is a
free (GPL v2) portable firmware implementation. The goal is to implement a 100% IEEE
1275-1994 (referred to as Open Firmware) compliant firmware.

A sample Linux 2.6 series kernel and ram disk image are available on the QEMU web site.
There are still issues with NetBSD and OpenBSD, but most kernel versions work. Please
note that currently older Solaris kernels don’t work probably due to interface issues between
OpenBIOS and Solaris.

The following options are specific to the Sparc32 emulation:

-g WxHx[xDEPTH]

Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
of 1152x900x8 for people who wish to use OBP.

-prom-env string

Set OpenBIOS variables in NVRAM, for example:

qemu-system-sparc -prom-env ’auto-boot?=false’ \

https://www.openbios.org/

Chapter 3: QEMU System emulator for non PC targets 134

-prom-env ’boot-device=sd(0,2,0):d’ -prom-env ’boot-args=linux single’

-M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]

Set the emulated machine type. Default is SS-5.

3.3 Sparc64 System emulator

Use the executable qemu-system-sparc64 to simulate a Sun4u (UltraSPARC PC-like ma-
chine), Sun4v (T1 PC-like machine), or generic Niagara (T1) machine. The Sun4u emulator
is mostly complete, being able to run Linux, NetBSD and OpenBSD in headless (-nographic)
mode. The Sun4v emulator is still a work in progress.

The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/
directory of the OpenSPARC T1 project http://download.oracle.com/technetwork/

systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2 and is able to boot the disk.s10hw2
Solaris image.

qemu-system-sparc64 -M niagara -L /path-to/S10image/ \

-nographic -m 256 \

-drive if=pflash,readonly=on,file=/S10image/disk.s10hw2

QEMU emulates the following peripherals:

− UltraSparc IIi APB PCI Bridge

− PCI VGA compatible card with VESA Bochs Extensions

− PS/2 mouse and keyboard

− Non Volatile RAM M48T59

− PC-compatible serial ports

− 2 PCI IDE interfaces with hard disk and CD-ROM support

− Floppy disk

The following options are specific to the Sparc64 emulation:

-prom-env string

Set OpenBIOS variables in NVRAM, for example:

qemu-system-sparc64 -prom-env ’auto-boot?=false’

-M [sun4u|sun4v|niagara]

Set the emulated machine type. The default is sun4u.

3.4 MIPS System emulator

Four executables cover simulation of 32 and 64-bit MIPS systems in both endian op-
tions, qemu-system-mips, qemu-system-mipsel qemu-system-mips64 and qemu-system-

mips64el. Five different machine types are emulated:

− A generic ISA PC-like machine "mips"

− The MIPS Malta prototype board "malta"

− An ACER Pica "pica61". This machine needs the 64-bit emulator.

− MIPS emulator pseudo board "mipssim"

− A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.

http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2
http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2

Chapter 3: QEMU System emulator for non PC targets 135

The generic emulation is supported by Debian ’Etch’ and is able to install Debian into a
virtual disk image. The following devices are emulated:

− A range of MIPS CPUs, default is the 24Kf

− PC style serial port

− PC style IDE disk

− NE2000 network card

The Malta emulation supports the following devices:

− Core board with MIPS 24Kf CPU and Galileo system controller

− PIIX4 PCI/USB/SMbus controller

− The Multi-I/O chip’s serial device

− PCI network cards (PCnet32 and others)

− Malta FPGA serial device

− Cirrus (default) or any other PCI VGA graphics card

The Boston board emulation supports the following devices:

− Xilinx FPGA, which includes a PCIe root port and an UART

− Intel EG20T PCH connects the I/O peripherals, but only the SATA bus is emulated

The ACER Pica emulation supports:

− MIPS R4000 CPU

− PC-style IRQ and DMA controllers

− PC Keyboard

− IDE controller

The MIPS Magnum R4000 emulation supports:

− MIPS R4000 CPU

− PC-style IRQ controller

− PC Keyboard

− SCSI controller

− G364 framebuffer

The Fulong 2E emulation supports:

− Loongson 2E CPU

− Bonito64 system controller as North Bridge

− VT82C686 chipset as South Bridge

− RTL8139D as a network card chipset

The mipssim pseudo board emulation provides an environment similar to what the propri-
etary MIPS emulator uses for running Linux. It supports:

− A range of MIPS CPUs, default is the 24Kf

− PC style serial port

− MIPSnet network emulation

Chapter 3: QEMU System emulator for non PC targets 136

3.4.1 nanoMIPS System emulator

Executable qemu-system-mipsel also covers simulation of 32-bit nanoMIPS system in little
endian mode:

− nanoMIPS I7200 CPU

Example of qemu-system-mipsel usage for nanoMIPS is shown below:

Download <disk_image_file> from https://mipsdistros.mips.com/LinuxDistro/

nanomips/buildroot/index.html.

Download <kernel_image_file> from https://mipsdistros.mips.com/LinuxDistro/

nanomips/kernels/v4.15.18-432-gb2eb9a8b07a1-20180627102142/index.html.

Start system emulation of Malta board with nanoMIPS I7200 CPU:

qemu-system-mipsel -cpu I7200 -kernel <kernel_image_file> \

-M malta -serial stdio -m <memory_size> -hda <disk_image_file> \

-append "mem=256m@0x0 rw console=ttyS0 vga=cirrus vesa=0x111 root=/dev/sda"

3.5 ARM System emulator

Use the executable qemu-system-arm to simulate a ARM machine. The ARM Integra-
tor/CP board is emulated with the following devices:

− ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU

− Two PL011 UARTs

− SMC 91c111 Ethernet adapter

− PL110 LCD controller

− PL050 KMI with PS/2 keyboard and mouse.

− PL181 MultiMedia Card Interface with SD card.

The ARM Versatile baseboard is emulated with the following devices:

− ARM926E, ARM1136 or Cortex-A8 CPU

− PL190 Vectored Interrupt Controller

− Four PL011 UARTs

− SMC 91c111 Ethernet adapter

− PL110 LCD controller

− PL050 KMI with PS/2 keyboard and mouse.

− PCI host bridge. Note the emulated PCI bridge only provides access to PCI memory
space. It does not provide access to PCI IO space. This means some devices (eg.
ne2k pci NIC) are not usable, and others (eg. rtl8139 NIC) are only usable when the
guest drivers use the memory mapped control registers.

− PCI OHCI USB controller.

− LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.

− PL181 MultiMedia Card Interface with SD card.

Several variants of the ARM RealView baseboard are emulated, including the EB, PB-A8
and PBX-A9. Due to interactions with the bootloader, only certain Linux kernel configu-
rations work out of the box on these boards.

https://mipsdistros.mips.com/LinuxDistro/nanomips/buildroot/index.html
https://mipsdistros.mips.com/LinuxDistro/nanomips/buildroot/index.html
https://mipsdistros.mips.com/LinuxDistro/nanomips/kernels/v4.15.18-432-gb2eb9a8b07a1-20180627102142/index.html
https://mipsdistros.mips.com/LinuxDistro/nanomips/kernels/v4.15.18-432-gb2eb9a8b07a1-20180627102142/index.html

Chapter 3: QEMU System emulator for non PC targets 137

Kernels for the PB-A8 board should have CONFIG REALVIEW HIGH PHYS OFFSET
enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board should have
CONFIG SPARSEMEM enabled, CONFIG REALVIEW HIGH PHYS OFFSET disabled
and expect 1024M RAM.

The following devices are emulated:

− ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU

− ARM AMBA Generic/Distributed Interrupt Controller

− Four PL011 UARTs

− SMC 91c111 or SMSC LAN9118 Ethernet adapter

− PL110 LCD controller

− PL050 KMI with PS/2 keyboard and mouse

− PCI host bridge

− PCI OHCI USB controller

− LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices

− PL181 MultiMedia Card Interface with SD card.

The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi" and "Terrier") emu-
lation includes the following peripherals:

− Intel PXA270 System-on-chip (ARM V5TE core)

− NAND Flash memory

− IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"

− On-chip OHCI USB controller

− On-chip LCD controller

− On-chip Real Time Clock

− TI ADS7846 touchscreen controller on SSP bus

− Maxim MAX1111 analog-digital converter on I2C bus

− GPIO-connected keyboard controller and LEDs

− Secure Digital card connected to PXA MMC/SD host

− Three on-chip UARTs

− WM8750 audio CODEC on I2C and I2S busses

The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the following ele-
ments:

− Texas Instruments OMAP310 System-on-chip (ARM 925T core)

− ROM and RAM memories (ROM firmware image can be loaded with -option-rom)

− On-chip LCD controller

− On-chip Real Time Clock

− TI TSC2102i touchscreen controller / analog-digital converter / Audio CODEC, con-
nected through MicroWire and I2S busses

− GPIO-connected matrix keypad

− Secure Digital card connected to OMAP MMC/SD host

Chapter 3: QEMU System emulator for non PC targets 138

− Three on-chip UARTs

Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48) emulation
supports the following elements:

− Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)

− RAM and non-volatile OneNAND Flash memories

− Display connected to EPSON remote framebuffer chip and OMAP on-chip display
controller and a LS041y3 MIPI DBI-C controller

− TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers driven
through SPI bus

− National Semiconductor LM8323-controlled qwerty keyboard driven through I2C bus

− Secure Digital card connected to OMAP MMC/SD host

− Three OMAP on-chip UARTs and on-chip STI debugging console

− A Bluetooth(R) transceiver and HCI connected to an UART

− Mentor Graphics "Inventra" dual-role USB controller embedded in a TI TUSB6010
chip - only USB host mode is supported

− TI TMP105 temperature sensor driven through I2C bus

− TI TWL92230C power management companion with an RTC on I2C bus

− Nokia RETU and TAHVO multi-purpose chips with an RTC, connected through CBUS

The Luminary Micro Stellaris LM3S811EVB emulation includes the following devices:

− Cortex-M3 CPU core.

− 64k Flash and 8k SRAM.

− Timers, UARTs, ADC and I2C interface.

− OSRAM Pictiva 96x16 OLED with SSD0303 controller on I2C bus.

The Luminary Micro Stellaris LM3S6965EVB emulation includes the following devices:

− Cortex-M3 CPU core.

− 256k Flash and 64k SRAM.

− Timers, UARTs, ADC, I2C and SSI interfaces.

− OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.

The Freecom MusicPal internet radio emulation includes the following elements:

− Marvell MV88W8618 ARM core.

− 32 MB RAM, 256 KB SRAM, 8 MB flash.

− Up to 2 16550 UARTs

− MV88W8xx8 Ethernet controller

− MV88W8618 audio controller, WM8750 CODEC and mixer

− 128×64 display with brightness control

− 2 buttons, 2 navigation wheels with button function

The Siemens SX1 models v1 and v2 (default) basic emulation. The emulation includes the
following elements:

− Texas Instruments OMAP310 System-on-chip (ARM 925T core)

Chapter 3: QEMU System emulator for non PC targets 139

− ROM and RAM memories (ROM firmware image can be loaded with -pflash) V1 1
Flash of 16MB and 1 Flash of 8MB V2 1 Flash of 32MB

− On-chip LCD controller

− On-chip Real Time Clock

− Secure Digital card connected to OMAP MMC/SD host

− Three on-chip UARTs

A Linux 2.6 test image is available on the QEMU web site. More information is available
in the QEMU mailing-list archive.

The following options are specific to the ARM emulation:

-semihosting

Enable semihosting syscall emulation.

On ARM this implements the "Angel" interface.

Note that this allows guest direct access to the host filesystem, so should only
be used with trusted guest OS.

3.6 ColdFire System emulator

Use the executable qemu-system-m68k to simulate a ColdFire machine. The emulator is
able to boot a uClinux kernel.

The M5208EVB emulation includes the following devices:

− MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).

− Three Two on-chip UARTs.

− Fast Ethernet Controller (FEC)

The AN5206 emulation includes the following devices:

− MCF5206 ColdFire V2 Microprocessor.

− Two on-chip UARTs.

The following options are specific to the ColdFire emulation:

-semihosting

Enable semihosting syscall emulation.

On M68K this implements the "ColdFire GDB" interface used by libgloss.

Note that this allows guest direct access to the host filesystem, so should only
be used with trusted guest OS.

3.7 Cris System emulator

TODO

3.8 Microblaze System emulator

TODO

3.9 SH4 System emulator

TODO

Chapter 3: QEMU System emulator for non PC targets 140

3.10 Xtensa System emulator

Two executables cover simulation of both Xtensa endian options, qemu-system-xtensa and
qemu-system-xtensaeb. Two different machine types are emulated:

− Xtensa emulator pseudo board "sim"

− Avnet LX60/LX110/LX200 board

The sim pseudo board emulation provides an environment similar to one provided by the
proprietary Tensilica ISS. It supports:

− A range of Xtensa CPUs, default is the DC232B

− Console and filesystem access via semihosting calls

The Avnet LX60/LX110/LX200 emulation supports:

− A range of Xtensa CPUs, default is the DC232B

− 16550 UART

− OpenCores 10/100 Mbps Ethernet MAC

The following options are specific to the Xtensa emulation:

-semihosting

Enable semihosting syscall emulation.

Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
Tensilica baremetal libc for ISS and linux platform "sim" use this interface.

Note that this allows guest direct access to the host filesystem, so should only
be used with trusted guest OS.

141

4 QEMU Guest Agent invocation

qemu-ga [OPTIONS]

The QEMU Guest Agent is a daemon intended to be run within virtual machines. It allows
the hypervisor host to perform various operations in the guest, such as:

• get information from the guest

• set the guest’s system time

• read/write a file

• sync and freeze the filesystems

• suspend the guest

• reconfigure guest local processors

• set user’s password

• ...

qemu-ga will read a system configuration file on startup (located at c:/Program

Files/QEMU/qemu-ga.conf by default), then parse remaining configuration options on the
command line. For the same key, the last option wins, but the lists accumulate (see below
for configuration file format).

-m, --method=method

Transport method: one of ‘unix-listen’, ‘virtio-serial’, or ‘isa-serial’
(‘virtio-serial’ is the default).

-p, --path=path

Device/socket path (the default for virtio-serial is ‘/dev/virtio-ports/org.qemu.guest_agent.0’,
the default for isa-serial is ‘/dev/ttyS0’)

-l, --logfile=path

Set log file path (default is stderr).

-f, --pidfile=path

Specify pid file (default is ‘/var/run/qemu-ga.pid’).

-F, --fsfreeze-hook=path

Enable fsfreeze hook. Accepts an optional argument that specifies script
to run on freeze/thaw. Script will be called with ’freeze’/’thaw’ arguments
accordingly (default is ‘c:/Program Files/QEMU/fsfreeze-hook’). If
using -F with an argument, do not follow -F with a space (for example:
‘-F/var/run/fsfreezehook.sh’).

-t, --statedir=path

Specify the directory to store state information (absolute paths only, default is
‘/var/run’).

-v, --verbose

Log extra debugging information.

-V, --version

Print version information and exit.

142

-d, --daemon

Daemonize after startup (detach from terminal).

-b, --blacklist=list

Comma-separated list of RPCs to disable (no spaces, ‘?’ to list available RPCs).

-D, --dump-conf

Dump the configuration in a format compatible with qemu-ga.conf and exit.

-h, --help

Display this help and exit.

The syntax of the qemu-ga.conf configuration file follows the Desktop Entry Specifica-
tion, here is a quick summary: it consists of groups of key-value pairs, interspersed with
comments.

qemu-ga configuration sample

[general]

daemonize = 0

pidfile = /var/run/qemu-ga.pid

verbose = 0

method = virtio-serial

path = /dev/virtio-ports/org.qemu.guest_agent.0

statedir = /var/run

The list of keys follows the command line options:

daemon= boolean

method= string

path= string

logfile= string

pidfile= string

fsfreeze-hook= string

statedir= string

verbose= boolean

blacklist= string list

143

5 QEMU User space emulator

5.1 Supported Operating Systems

The following OS are supported in user space emulation:

− Linux (referred as qemu-linux-user)

− BSD (referred as qemu-bsd-user)

5.2 Features

QEMU user space emulation has the following notable features:

System call translation:
QEMU includes a generic system call translator. This means that the pa-
rameters of the system calls can be converted to fix endianness and 32/64-bit
mismatches between hosts and targets. IOCTLs can be converted too.

POSIX signal handling:
QEMU can redirect to the running program all signals coming from the host
(such as SIGALRM), as well as synthesize signals from virtual CPU exceptions
(for example SIGFPE when the program executes a division by zero).

QEMU relies on the host kernel to emulate most signal system calls, for example
to emulate the signal mask. On Linux, QEMU supports both normal and real-
time signals.

Threading:
On Linux, QEMU can emulate the clone syscall and create a real host thread
(with a separate virtual CPU) for each emulated thread. Note that not all
targets currently emulate atomic operations correctly. x86 and ARM use a
global lock in order to preserve their semantics.

QEMU was conceived so that ultimately it can emulate itself. Although it is not very useful,
it is an important test to show the power of the emulator.

5.3 Linux User space emulator

5.3.1 Quick Start

In order to launch a Linux process, QEMU needs the process executable itself and all the
target (x86) dynamic libraries used by it.

• On x86, you can just try to launch any process by using the native libraries:

qemu-i386 -L / /bin/ls

-L / tells that the x86 dynamic linker must be searched with a / prefix.

• Since QEMU is also a linux process, you can launch QEMU with QEMU (NOTE: you
can only do that if you compiled QEMU from the sources):

qemu-i386 -L / qemu-i386 -L / /bin/ls

Chapter 5: QEMU User space emulator 144

• On non x86 CPUs, you need first to download at least an x86 glibc (qemu-runtime-
i386-XXX-.tar.gz on the QEMU web page). Ensure that LD_LIBRARY_PATH is not
set:

unset LD_LIBRARY_PATH

Then you can launch the precompiled ls x86 executable:

qemu-i386 tests/i386/ls

You can look at scripts/qemu-binfmt-conf.sh so that QEMU is automatically
launched by the Linux kernel when you try to launch x86 executables. It requires the
binfmt_misc module in the Linux kernel.

• The x86 version of QEMU is also included. You can try weird things such as:

qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \

/usr/local/qemu-i386/bin/ls-i386

5.3.2 Wine launch

• Ensure that you have a working QEMU with the x86 glibc distribution (see previous
section). In order to verify it, you must be able to do:

qemu-i386 /usr/local/qemu-i386/bin/ls-i386

• Download the binary x86 Wine install (qemu-XXX-i386-wine.tar.gz on the QEMU
web page).

• Configure Wine on your account. Look at the provided script /usr/local/qemu-i386/
bin/wine-conf.sh. Your previous ${HOME}/.wine directory is saved to
${HOME}/.wine.org.

• Then you can try the example putty.exe:

qemu-i386 /usr/local/qemu-i386/wine/bin/wine \

/usr/local/qemu-i386/wine/c/Program\ Files/putty.exe

5.3.3 Command line options

qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] pro-

gram [arguments...]

-h Print the help

-L path Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)

-s size Set the x86 stack size in bytes (default=524288)

-cpu model

Select CPU model (-cpu help for list and additional feature selection)

-E var=value

Set environment var to value.

-U var Remove var from the environment.

-B offset Offset guest address by the specified number of bytes. This is useful when
the address region required by guest applications is reserved on the host. This
option is currently only supported on some hosts.

Chapter 5: QEMU User space emulator 145

-R size Pre-allocate a guest virtual address space of the given size (in bytes). "G",
"M", and "k" suffixes may be used when specifying the size.

Debug options:

-d item1,...

Activate logging of the specified items (use ’-d help’ for a list of log items)

-p pagesize

Act as if the host page size was ’pagesize’ bytes

-g port Wait gdb connection to port

-singlestep

Run the emulation in single step mode.

Environment variables:

QEMU_STRACE

Print system calls and arguments similar to the ’strace’ program (NOTE: the
actual ’strace’ program will not work because the user space emulator hasn’t
implemented ptrace). At the moment this is incomplete. All system calls that
don’t have a specific argument format are printed with information for six
arguments. Many flag-style arguments don’t have decoders and will show up
as numbers.

5.3.4 Other binaries

qemu-alpha TODO.

qemu-armeb TODO.

qemu-arm is also capable of running ARM "Angel" semihosted ELF binaries (as imple-
mented by the arm-elf and arm-eabi Newlib/GDB configurations), and arm-uclinux bFLT
format binaries.

qemu-m68k is capable of running semihosted binaries using the BDM (m5xxx-ram-hosted.ld)
or m68k-sim (sim.ld) syscall interfaces, and coldfire uClinux bFLT format binaries.

The binary format is detected automatically.

qemu-cris TODO.

qemu-i386 TODO. qemu-x86_64 TODO.

qemu-microblaze TODO.

qemu-mips executes 32-bit big endian MIPS binaries (MIPS O32 ABI).

qemu-mipsel executes 32-bit little endian MIPS binaries (MIPS O32 ABI).

qemu-mips64 executes 64-bit big endian MIPS binaries (MIPS N64 ABI).

qemu-mips64el executes 64-bit little endian MIPS binaries (MIPS N64 ABI).

qemu-mipsn32 executes 32-bit big endian MIPS binaries (MIPS N32 ABI).

qemu-mipsn32el executes 32-bit little endian MIPS binaries (MIPS N32 ABI).

qemu-nios2 TODO.

qemu-ppc64abi32 TODO. qemu-ppc64 TODO. qemu-ppc TODO.

qemu-sh4eb TODO. qemu-sh4 TODO.

Chapter 5: QEMU User space emulator 146

qemu-sparc can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).

qemu-sparc32plus can execute Sparc32 and SPARC32PLUS binaries (Sparc64 CPU, 32
bit ABI).

qemu-sparc64 can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and SPARC32PLUS
binaries (Sparc64 CPU, 32 bit ABI).

5.4 BSD User space emulator

5.4.1 BSD Status

− target Sparc64 on Sparc64: Some trivial programs work.

5.4.2 Quick Start

In order to launch a BSD process, QEMU needs the process executable itself and all the
target dynamic libraries used by it.

• On Sparc64, you can just try to launch any process by using the native libraries:

qemu-sparc64 /bin/ls

5.4.3 Command line options

qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]

-h Print the help

-L path Set the library root path (default=/)

-s size Set the stack size in bytes (default=524288)

-ignore-environment

Start with an empty environment. Without this option, the initial environment
is a copy of the caller’s environment.

-E var=value

Set environment var to value.

-U var Remove var from the environment.

-bsd type Set the type of the emulated BSD Operating system. Valid values are FreeBSD,
NetBSD and OpenBSD (default).

Debug options:

-d item1,...

Activate logging of the specified items (use ’-d help’ for a list of log items)

-p pagesize

Act as if the host page size was ’pagesize’ bytes

-singlestep

Run the emulation in single step mode.

147

6 System requirements

6.1 KVM kernel module

On x86 64 hosts, the default set of CPU features enabled by the KVM accelerator require
the host to be running Linux v4.5 or newer.

The OpteronG[345] CPU models require KVM support for RDTSCP, which was added with
Linux 4.5 which is supported by the major distros. And even if RHEL7 has kernel 3.10,
KVM there has the required functionality there to make it close to a 4.5 or newer kernel.

148

7 Security

7.1 Overview

This chapter explains the security requirements that QEMU is designed to meet and prin-
ciples for securely deploying QEMU.

7.2 Security Requirements

QEMU supports many different use cases, some of which have stricter security requirements
than others. The community has agreed on the overall security requirements that users
may depend on. These requirements define what is considered supported from a security
perspective.

7.2.1 Virtualization Use Case

The virtualization use case covers cloud and virtual private server (VPS) hosting, as well
as traditional data center and desktop virtualization. These use cases rely on hardware
virtualization extensions to execute guest code safely on the physical CPU at close-to-native
speed.

The following entities are untrusted, meaning that they may be buggy or malicious:

• Guest

• User-facing interfaces (e.g. VNC, SPICE, WebSocket)

• Network protocols (e.g. NBD, live migration)

• User-supplied files (e.g. disk images, kernels, device trees)

• Passthrough devices (e.g. PCI, USB)

Bugs affecting these entities are evaluated on whether they can cause damage in real-world
use cases and treated as security bugs if this is the case.

7.2.2 Non-virtualization Use Case

The non-virtualization use case covers emulation using the Tiny Code Generator
(TCG). In principle the TCG and device emulation code used in conjunction with
the non-virtualization use case should meet the same security requirements as the
virtualization use case. However, for historical reasons much of the non-virtualization use
case code was not written with these security requirements in mind.

Bugs affecting the non-virtualization use case are not considered security bugs at this time.
Users with non-virtualization use cases must not rely on QEMU to provide guest isolation
or any security guarantees.

7.3 Architecture

This section describes the design principles that ensure the security requirements are met.

Chapter 7: Security 149

7.3.1 Guest Isolation

Guest isolation is the confinement of guest code to the virtual machine. When guest code
gains control of execution on the host this is called escaping the virtual machine. Isolation
also includes resource limits such as throttling of CPU, memory, disk, or network. Guests
must be unable to exceed their resource limits.

QEMU presents an attack surface to the guest in the form of emulated devices. The guest
must not be able to gain control of QEMU. Bugs in emulated devices could allow malicious
guests to gain code execution in QEMU. At this point the guest has escaped the virtual
machine and is able to act in the context of the QEMU process on the host.

Guests often interact with other guests and share resources with them. A malicious guest
must not gain control of other guests or access their data. Disk image files and network
traffic must be protected from other guests unless explicitly shared between them by the
user.

7.3.2 Principle of Least Privilege

The principle of least privilege states that each component only has access to the privileges
necessary for its function. In the case of QEMU this means that each process only has
access to resources belonging to the guest.

The QEMU process should not have access to any resources that are inaccessible to the
guest. This way the guest does not gain anything by escaping into the QEMU process since
it already has access to those same resources from within the guest.

Following the principle of least privilege immediately fulfills guest isolation requirements.
For example, guest A only has access to its own disk image file a.img and not guest B’s
disk image file b.img.

In reality certain resources are inaccessible to the guest but must be available to QEMU to
perform its function. For example, host system calls are necessary for QEMU but are not
exposed to guests. A guest that escapes into the QEMU process can then begin invoking
host system calls.

New features must be designed to follow the principle of least privilege. Should this not
be possible for technical reasons, the security risk must be clearly documented so users are
aware of the trade-off of enabling the feature.

7.3.3 Isolation mechanisms

Several isolation mechanisms are available to realize this architecture of guest isolation and
the principle of least privilege. With the exception of Linux seccomp, these mechanisms
are all deployed by management tools that launch QEMU, such as libvirt. They are also
platform-specific so they are only described briefly for Linux here.

The fundamental isolation mechanism is that QEMU processes must run as unprivileged
users. Sometimes it seems more convenient to launch QEMU as root to give it access to
host devices (e.g. /dev/net/tun) but this poses a huge security risk. File descriptor passing
can be used to give an otherwise unprivileged QEMU process access to host devices without
running QEMU as root. It is also possible to launch QEMU as a non-root user and configure
UNIX groups for access to /dev/kvm, /dev/net/tun, and other device nodes. Some Linux
distros already ship with UNIX groups for these devices by default.

Chapter 7: Security 150

• SELinux and AppArmor make it possible to confine processes beyond the traditional
UNIX process and file permissions model. They restrict the QEMU process from
accessing processes and files on the host system that are not needed by QEMU.

• Resource limits and cgroup controllers provide throughput and utilization limits on key
resources such as CPU time, memory, and I/O bandwidth.

• Linux namespaces can be used to make process, file system, and other system resources
unavailable to QEMU. A namespaced QEMU process is restricted to only those re-
sources that were granted to it.

• Linux seccomp is available via the QEMU --sandbox option. It disables system calls
that are not needed by QEMU, thereby reducing the host kernel attack surface.

7.4 Sensitive configurations

There are aspects of QEMU that can have security implications which users & management
applications must be aware of.

7.4.1 Monitor console (QMP and HMP)

The monitor console (whether used with QMP or HMP) provides an interface to dynamically
control many aspects of QEMU’s runtime operation. Many of the commands exposed will
instruct QEMU to access content on the host file system and/or trigger spawning of external
processes.

For example, the migrate command allows for the spawning of arbitrary processes for the
purpose of tunnelling the migration data stream. The blockdev-add command instructs
QEMU to open arbitrary files, exposing their content to the guest as a virtual disk.

Unless QEMU is otherwise confined using technologies such as SELinux, AppArmor, or
Linux namespaces, the monitor console should be considered to have privileges equivalent
to those of the user account QEMU is running under.

It is further important to consider the security of the character device backend over which
the monitor console is exposed. It needs to have protection against malicious third parties
which might try to make unauthorized connections, or perform man-in-the-middle attacks.
Many of the character device backends do not satisfy this requirement and so must not be
used for the monitor console.

The general recommendation is that the monitor console should be exposed over a UNIX
domain socket backend to the local host only. Use of the TCP based character device
backend is inappropriate unless configured to use both TLS encryption and authorization
control policy on client connections.

In summary, the monitor console is considered a privileged control interface to QEMU and
as such should only be made accessible to a trusted management application or user.

151

Appendix A Implementation notes

A.1 CPU emulation

A.1.1 x86 and x86-64 emulation

QEMU x86 target features:

• The virtual x86 CPU supports 16 bit and 32 bit addressing with segmentation.
LDT/GDT and IDT are emulated. VM86 mode is also supported to run DOSEMU.
There is some support for MMX/3DNow!, SSE, SSE2, SSE3, SSSE3, and SSE4 as
well as x86-64 SVM.

• Support of host page sizes bigger than 4KB in user mode emulation.

• QEMU can emulate itself on x86.

• An extensive Linux x86 CPU test program is included tests/test-i386. It can be
used to test other x86 virtual CPUs.

Current QEMU limitations:

• Limited x86-64 support.

• IPC syscalls are missing.

• The x86 segment limits and access rights are not tested at every memory access (yet).
Hopefully, very few OSes seem to rely on that for normal use.

A.1.2 ARM emulation

• Full ARM 7 user emulation.

• NWFPE FPU support included in user Linux emulation.

• Can run most ARM Linux binaries.

A.1.3 MIPS emulation

• The system emulation allows full MIPS32/MIPS64 Release 2 emulation, including priv-
ileged instructions, FPU and MMU, in both little and big endian modes.

• The Linux userland emulation can run many 32 bit MIPS Linux binaries.

Current QEMU limitations:

• Self-modifying code is not always handled correctly.

• 64 bit userland emulation is not implemented.

• The system emulation is not complete enough to run real firmware.

• The watchpoint debug facility is not implemented.

A.1.4 PowerPC emulation

• Full PowerPC 32 bit emulation, including privileged instructions, FPU and MMU.

• Can run most PowerPC Linux binaries.

Appendix A: Implementation notes 152

A.1.5 Sparc32 and Sparc64 emulation

• Full SPARC V8 emulation, including privileged instructions, FPU and MMU. SPARC
V9 emulation includes most privileged and VIS instructions, FPU and I/D MMU.
Alignment is fully enforced.

• Can run most 32-bit SPARC Linux binaries, SPARC32PLUS Linux binaries and some
64-bit SPARC Linux binaries.

Current QEMU limitations:

• IPC syscalls are missing.

• Floating point exception support is buggy.

• Atomic instructions are not correctly implemented.

• There are still some problems with Sparc64 emulators.

A.1.6 Xtensa emulation

• Core Xtensa ISA emulation, including most options: code density, loop, extended
L32R, 16- and 32-bit multiplication, 32-bit division, MAC16, miscellaneous operations,
boolean, FP coprocessor, coprocessor context, debug, multiprocessor synchronization,
conditional store, exceptions, relocatable vectors, unaligned exception, interrupts (in-
cluding high priority and timer), hardware alignment, region protection, region trans-
lation, MMU, windowed registers, thread pointer, processor ID.

• Not implemented options: data/instruction cache (including cache prefetch and lock-
ing), XLMI, processor interface. Also options not covered by the core ISA (e.g. FLIX,
wide branches) are not implemented.

• Can run most Xtensa Linux binaries.

• New core configuration that requires no additional instructions may be created from
overlay with minimal amount of hand-written code.

A.2 Managed start up options

In system mode emulation, it’s possible to create a VM in a paused state using the -
S command line option. In this state the machine is completely initialized according to
command line options and ready to execute VM code but VCPU threads are not executing
any code. The VM state in this paused state depends on the way QEMU was started. It
could be in:

initial state (after reset/power on state)
with direct kernel loading, the initial state could be amended to execute

code loaded by QEMU in the VM’s RAM and with incoming migration

with incoming migration, initial state will by amended with the migrated
machine state after migration completes.

This paused state is typically used by users to query machine state and/or additionally
configure the machine (by hotplugging devices) in runtime before allowing VM code to run.

However, at the -S pause point, it’s impossible to configure options that affect initial VM
creation (like: -smp/-m/-numa ...) or cold plug devices. The experimental –preconfig
command line option allows pausing QEMU before the initial VM creation, in a “preconfig”

153

state, where additional queries and configuration can be performed via QMP before moving
on to the resulting configuration startup. In the preconfig state, QEMU only allows a
limited set of commands over the QMP monitor, where the commands do not depend on
an initialized machine, including but not limited to:

qmp capabilities
query-qmp-schema
query-commands
query-status
x-exit-preconfig

154

Appendix B Deprecated features

In general features are intended to be supported indefinitely once introduced into QEMU.
In the event that a feature needs to be removed, it will be listed in this appendix. The
feature will remain functional for 2 releases prior to actual removal. Deprecated features
may also generate warnings on the console when QEMU starts up, or if activated via a
monitor command, however, this is not a mandatory requirement.

Prior to the 2.10.0 release there was no official policy on how long features would be dep-
recated prior to their removal, nor any documented list of which features were deprecated.
Thus any features deprecated prior to 2.10.0 will be treated as if they were first deprecated
in the 2.10.0 release.

What follows is a list of all features currently marked as deprecated.

B.1 System emulator command line arguments

B.1.1 -machine enforce-config-section=on|off (since 3.1)

The enforce-config-section parameter is replaced by the -global migration.send-

configuration=on|off option.

B.1.2 -no-kvm (since 1.3.0)

The “-no-kvm” argument is now a synonym for setting “-machine accel=tcg”.

B.1.3 -usbdevice (since 2.10.0)

The “-usbdevice DEV” argument is now a synonym for setting the “-device usb-DEV”
argument instead. The deprecated syntax would automatically enable USB support on the
machine type. If using the new syntax, USB support must be explicitly enabled via the
“-machine usb=on” argument.

B.1.4 -drive file=json:{...{’driver’:’file’}} (since 3.0)

The ’file’ driver for drives is no longer appropriate for character or host devices and will
only accept regular files (S IFREG). The correct driver for these file types is ’host cdrom’
or ’host device’ as appropriate.

B.1.5 -net ...,name=name (since 3.1)

The name parameter of the -net option is a synonym for the id parameter, which should
now be used instead.

B.1.6 -smp (invalid topologies) (since 3.1)

CPU topology properties should describe whole machine topology including possible CPUs.

However, historically it was possible to start QEMU with an incorrect topology where n <=
sockets ∗ cores ∗ threads < maxcpus, which could lead to an incorrect topology enumeration
by the guest. Support for invalid topologies will be removed, the user must ensure topologies
described with -smp include all possible cpus, i.e. sockets ∗ cores ∗ threads = maxcpus.

Appendix B: Deprecated features 155

B.1.7 -vnc acl (since 4.0.0)

The acl option to the -vnc argument has been replaced by the tls-authz and sasl-authz

options.

B.1.8 QEMU AUDIO environment variables and -audio-help
(since 4.0)

The “-audiodev” argument is now the preferred way to specify audio backend settings
instead of environment variables. To ease migration to the new format, the “-audiodev-
help” option can be used to convert the current values of the environment variables to
“-audiodev” options.

B.1.9 -mon ...,control=readline,pretty=on|off (since 4.1)

The pretty=on|off switch has no effect for HMP monitors, but is silently ignored. Using
the switch with HMP monitors will become an error in the future.

B.1.10 -realtime (since 4.1)

The -realtime mlock=on|off argument has been replaced by the -overcommit

mem-lock=on|off argument.

B.1.11 -virtfs synth (since 4.1)

The “-virtfs synth” argument is now deprecated. Please use “-fsdev synth” and “-device
virtio-9p-...” instead.

B.1.12 -numa node,mem=size (since 4.1)

The parameter mem of -numa node is used to assign a part of guest RAM to a NUMA node.
But when using it, it’s impossible to manage specified RAM chunk on the host side (like
bind it to a host node, setting bind policy, ...), so guest end-ups with the fake NUMA
configuration with suboptiomal performance. However since 2014 there is an alternative
way to assign RAM to a NUMA node using parameter memdev, which does the same as mem
and adds means to actualy manage node RAM on the host side. Use parameter memdev

with memory-backend-ram backend as an replacement for parameter mem to achieve the
same fake NUMA effect or a properly configured memory-backend-file backend to actually
benefit from NUMA configuration. In future new machine versions will not accept the
option but it will still work with old machine types. User can check QAPI schema to see if
the legacy option is supported by looking at MachineInfo::numa-mem-supported property.

B.1.13 -numa node (without memory specified) (since 4.1)

Splitting RAM by default between NUMA nodes has the same issues as mem parameter
described above with the difference that the role of the user plays QEMU using implicit
generic or board specific splitting rule. Use memdev with memory-backend-ram backend or
mem (if it’s supported by used machine type) to define mapping explictly instead.

B.1.14 -mem-path fallback to RAM (since 4.1)

Currently if guest RAM allocation from file pointed by mem-path fails, QEMU falls back to
allocating from RAM, which might result in unpredictable behavior since the backing file
specified by the user is ignored. In the future, users will be responsible for making sure the

Appendix B: Deprecated features 156

backing storage specified with -mem-path can actually provide the guest RAM configured
with -m and QEMU will fail to start up if RAM allocation is unsuccessful.

B.1.15 RISC-V -bios (since 4.1)

QEMU 4.1 introduced support for the -bios option in QEMU for RISC-V for the RISC-V
virt machine and sifive u machine.

QEMU 4.1 has no changes to the default behaviour to avoid breakages. This default will
change in a future QEMU release, so please prepare now. All users of the virt or sifive u
machine must change their command line usage.

QEMU 4.1 has three options, please migrate to one of these three: 1. “-bios none“ - This
is the current default behavior if no -bios option is included. QEMU will not automatically
load any firmware. It is up to the user to load all the images they need. 2. “-bios default“
- In a future QEMU release this will become the default behaviour if no -bios option is
specified. This option will load the default OpenSBI firmware automatically. The firmware
is included with the QEMU release and no user interaction is required. All a user needs to
do is specify the kernel they want to boot with the -kernel option 3. “-bios <file>“ - Tells
QEMU to load the specified file as the firmwrae.

B.2 QEMU Machine Protocol (QMP) commands

B.2.1 block-dirty-bitmap-add "autoload" parameter (since 2.12.0)

"autoload" parameter is now ignored. All bitmaps are automatically loaded from qcow2
images.

B.2.2 query-block result field dirty-bitmaps[i].status (since 4.0)

The “status” field of the “BlockDirtyInfo” structure, returned by the query-block command
is deprecated. Two new boolean fields, “recording” and “busy” effectively replace it.

B.2.3 query-cpus (since 2.12.0)

The “query-cpus” command is replaced by the “query-cpus-fast” command.

B.2.4 query-cpus-fast "arch" output member (since 3.0.0)

The “arch” output member of the “query-cpus-fast” command is replaced by the “target”
output member.

B.2.5 cpu-add (since 4.0)

Use “device add” for hotplugging vCPUs instead of “cpu-add”. See documentation of
“query-hotpluggable-cpus” for additional details.

B.2.6 query-events (since 4.0)

The “query-events” command has been superseded by the more powerful and accurate
“query-qmp-schema” command.

B.2.7 chardev client socket with ’wait’ option (since 4.0)

Character devices creating sockets in client mode should not specify the ’wait’ field, which
is only applicable to sockets in server mode

Appendix B: Deprecated features 157

B.3 Human Monitor Protocol (HMP) commands

B.3.1 The hub id parameter of ’hostfwd add’ / ’hostfwd remove’
(since 3.1)

The [hub_id name] parameter tuple of the ’hostfwd add’ and ’hostfwd remove’ HMP com-
mands has been replaced by netdev_id.

B.3.2 cpu-add (since 4.0)

Use “device add” for hotplugging vCPUs instead of “cpu-add”. See documentation of
“query-hotpluggable-cpus” for additional details.

B.3.3 acl show, acl reset, acl policy, acl add, acl remove (since
4.0.0)

The “acl show”, “acl reset”, “acl policy”, “acl add”, and “acl remove” commands are dep-
recated with no replacement. Authorization for VNC should be performed using the plug-
gable QAuthZ objects.

B.4 Guest Emulator ISAs

B.4.1 RISC-V ISA privledge specification version 1.09.1 (since
4.1)

The RISC-V ISA privledge specification version 1.09.1 has been deprecated. QEMU sup-
ports both the newer version 1.10.0 and the ratified version 1.11.0, these should be used
instead of the 1.09.1 version.

B.5 System emulator CPUS

B.5.1 RISC-V ISA CPUs (since 4.1)

The RISC-V cpus with the ISA version in the CPU name have been depcreated. The
four CPUs are: “rv32gcsu-v1.9.1“, “rv32gcsu-v1.10.0“, “rv64gcsu-v1.9.1“ and “rv64gcsu-
v1.10.0“. Instead the version can be specified via the CPU “priv spec“ option when using
the “rv32“ or “rv64“ CPUs.

B.5.2 RISC-V ISA CPUs (since 4.1)

The RISC-V no MMU cpus have been depcreated. The two CPUs: “rv32imacu-nommu“
and “rv64imacu-nommu“ should no longer be used. Instead the MMU status can be speci-
fied via the CPU “mmu“ option when using the “rv32“ or “rv64“ CPUs.

B.6 System emulator devices

B.6.1 bluetooth (since 3.1)

The bluetooth subsystem is unmaintained since many years and likely bitrotten quite
a bit. It will be removed without replacement unless some users speaks up at the
qemu-devel@nongnu.org mailing list with information about their usecases.

mailto:qemu-devel@nongnu.org

Appendix B: Deprecated features 158

B.7 System emulator machines

B.7.1 pc-0.12, pc-0.13, pc-0.14 and pc-0.15 (since 4.0)

These machine types are very old and likely can not be used for live migration from old
QEMU versions anymore. A newer machine type should be used instead.

B.7.2 prep (PowerPC) (since 3.1)

This machine type uses an unmaintained firmware, broken in lots of ways, and unable to
start post-2004 operating systems. 40p machine type should be used instead.

B.7.3 spike v1.9.1 and spike v1.10 (since 4.1)

The version specific Spike machines have been deprecated in favour of the generic “spike“
machine. If you need to specify an older version of the RISC-V spec you can use the “-cpu
rv64gcsu,priv spec=v1.9.1“ command line argument.

B.8 Device options

B.8.1 Block device options

B.8.1.1 "backing": "" (since 2.12.0)

In order to prevent QEMU from automatically opening an image’s backing chain, use
“"backing": null” instead.

B.8.1.2 rbd keyvalue pair encoded filenames: "" (since 3.1.0)

Options for “rbd” should be specified according to its runtime options, like other block
drivers. Legacy parsing of keyvalue pair encoded filenames is useful to open images with
the old format for backing files; These image files should be updated to use the current
format.

Example of legacy encoding:

json:{"file.driver":"rbd", "file.filename":"rbd:rbd/name"}

The above, converted to the current supported format:

json:{"file.driver":"rbd", "file.pool":"rbd", "file.image":"name"}

B.9 Related binaries

B.9.1 qemu-nbd –partition (since 4.0.0)

The “qemu-nbd –partition $digit” code (also spelled -P) can only handle MBR partitions,
and has never correctly handled logical partitions beyond partition 5. If you know the offset
and length of the partition (perhaps by using sfdisk within the guest), you can achieve
the effect of exporting just that subset of the disk by use of the --image-opts option with
a raw blockdev using the offset and size parameters layered on top of any other existing
blockdev. For example, if partition 1 is 100MiB long starting at 1MiB, the old command:

qemu-nbd -t -P 1 -f qcow2 file.qcow2

can be rewritten as:

Appendix B: Deprecated features 159

qemu-nbd -t --image-opts driver=raw,offset=1M,size=100M,file.driver=qcow2,file.backing.driver=file,file.backing.filename=file.qcow2

Alternatively, the nbdkit project provides a more powerful partition filter on top of its nbd
plugin, which can be used to select an arbitrary MBR or GPT partition on top of any other
full-image NBD export. Using this to rewrite the above example results in:

qemu-nbd -t -k /tmp/sock -f qcow2 file.qcow2 & nbdkit -f --filter=partition nbd

socket=/tmp/sock partition=1

Note that if you are exposing the export via /dev/nbd0, it is easier to just export the entire
image and then mount only /dev/nbd0p1 than it is to reinvoke qemu-nbd -c /dev/nbd0

limited to just a subset of the image.

B.10 Build system

B.10.1 Python 2 support (since 4.1.0)

In the future, QEMU will require Python 3 to be available at build time. Support for
Python 2 in scripts shipped with QEMU is deprecated.

B.11 Backwards compatibility

B.11.1 Runnability guarantee of CPU models (since 4.1.0)

Previous versions of QEMU never changed existing CPU models in ways that introduced
additional host software or hardware requirements to the VM. This allowed management
software to safely change the machine type of an existing VM without introducing new
requirements ("runnability guarantee"). This prevented CPU models from being updated
to include CPU vulnerability mitigations, leaving guests vulnerable in the default configu-
ration.

The CPU model runnability guarantee won’t apply anymore to existing CPU models. Man-
agement software that needs runnability guarantees must resolve the CPU model aliases
using te “alias-of” field returned by the “query-cpu-definitions” QMP command.

160

Appendix C Supported build platforms

QEMU aims to support building and executing on multiple host OS platforms. This ap-
pendix outlines which platforms are the major build targets. These platforms are used as
the basis for deciding upon the minimum required versions of 3rd party software QEMU
depends on. The supported platforms are the targets for automated testing performed by
the project when patches are submitted for review, and tested before and after merge.

If a platform is not listed here, it does not imply that QEMU won’t work. If an unlisted
platform has comparable software versions to a listed platform, there is every expectation
that it will work. Bug reports are welcome for problems encountered on unlisted platforms
unless they are clearly older vintage than what is described here.

Note that when considering software versions shipped in distros as support targets, QEMU
considers only the version number, and assumes the features in that distro match the
upstream release with the same version. In other words, if a distro backports extra features
to the software in their distro, QEMU upstream code will not add explicit support for those
backports, unless the feature is auto-detectable in a manner that works for the upstream
releases too.

The Repology site https://repology.org is a useful resource to identify currently shipped
versions of software in various operating systems, though it does not cover all distros listed
below.

C.1 Linux OS

For distributions with frequent, short-lifetime releases, the project will aim to support all
versions that are not end of life by their respective vendors. For the purposes of identifying
supported software versions, the project will look at Fedora, Ubuntu, and openSUSE distros.
Other short- lifetime distros will be assumed to ship similar software versions.

For distributions with long-lifetime releases, the project will aim to support the most recent
major version at all times. Support for the previous major version will be dropped 2 years
after the new major version is released. For the purposes of identifying supported software
versions, the project will look at RHEL, Debian, Ubuntu LTS, and SLES distros. Other
long-lifetime distros will be assumed to ship similar software versions.

C.2 Windows

The project supports building with current versions of the MinGW toolchain, hosted on
Linux.

C.3 macOS

The project supports building with the two most recent versions of macOS, with the current
homebrew package set available.

C.4 FreeBSD

The project aims to support the all the versions which are not end of life.

https://repology.org

Appendix C: Supported build platforms 161

C.5 NetBSD

The project aims to support the most recent major version at all times. Support for the
previous major version will be dropped 2 years after the new major version is released.

C.6 OpenBSD

The project aims to support the all the versions which are not end of life.

162

Appendix D License

QEMU is a trademark of Fabrice Bellard.

QEMU is released under the GNU General Public License (https://www.gnu.org/
licenses/gpl-2.0.txt), version 2. Parts of QEMU have specific licenses, see file LICENSE
(https://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE).

https://www.gnu.org/licenses/gpl-2.0.txt
https://www.gnu.org/licenses/gpl-2.0.txt
https://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE
https://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE

163

Appendix E Index

E.1 Concept Index

This is the main index. Should we combine all keywords in one index? TODO

O
operating modes . 1

Q
QEMU monitor . 67
quick start . 2

S
system emulation . 1
system emulation (ARM) . 136
system emulation (ColdFire) 139
system emulation (Cris) . 139
system emulation (M68K) . 139
system emulation (Microblaze) 139
system emulation (MIPS) . 134
system emulation (nanoMIPS) 136
system emulation (PC) . 2
system emulation (PowerPC) 132

system emulation (SH4) . 139
system emulation (Sparc32) 133
system emulation (Sparc64) 134
system emulation (Xtensa) . 140

U
user mode (Alpha) . 145
user mode (ARM) . 145
user mode (ColdFire) . 145
user mode (Cris) . 145
user mode (i386) . 145
user mode (M68K) . 145
user mode (Microblaze) . 145
user mode (MIPS) . 145
user mode (NiosII) . 145
user mode (PowerPC) . 145
user mode (SH4) . 145
user mode (SPARC) . 145
user mode emulation . 1

E.2 Function Index

This index could be used for command line options and monitor functions.

–
--preconfig . 46
--trace . 89, 102
-accel . 4
-acpitable . 29
-add-fd . 6
-alt-grab . 23
-append . 43
-audio-help . 8
-audiodev . 8
-bios . 47
-blockdev . 12
-boot . 6
-bt . 41
-cdrom . 12
-chardev . 37
-chroot . 50
-cpu . 4
-ctrl-grab . 23
-curses . 23
-d . 47
-daemonize . 48
-debugcon . 46

-device . 10
-dfilter . 47
-display . 22
-drive . 15
-dtb . 43
-dump-vmstate . 52
-D . 47
-echr . 50
-enable-fips . 52
-enable-kvm . 47
-enable-sync-profile . 52
-fda . 12
-fdb . 12
-fsdev . 18
-full-screen . 25
-fw_cfg . 43
-g . 25
-gdb . 47
-global . 6
-h . 3
-hda . 12
-hdb . 12
-hdc . 12

Appendix E: Index 164

-hdd . 12
-icount . 48
-incoming . 50
-initrd . 43
-iscsi . 21
-k . 7
-kernel . 43
-loadvm . 48
-L . 47
-m . 7
-machine . 3
-mem-path . 7
-mem-prealloc . 7
-mon . 46
-monitor . 46
-msg . 52
-mtdblock . 18
-name . 12
-net . 36
-netdev . 30
-nic . 29
-no-acpi . 29
-no-fd-bootchk . 29
-no-hpet . 29
-no-quit . 23
-no-reboot . 48
-no-shutdown . 48
-no-user-config . 52
-nodefaults . 50
-nographic . 22
-numa . 5
-object . 52
-old-param (ARM) . 51
-only-migratable . 50
-option-rom . 48
-overcommit . 46
-parallel . 46
-pflash . 18
-pidfile . 46
-portrait . 25
-prom-env . 51
-qmp . 46
-qmp-pretty . 46
-readconfig . 51
-realtime . 46
-rotate . 25
-rtc . 48
-runas . 51
-s . 47
-sandbox . 51
-sd . 18
-sdl . 23
-seed . 47
-semihosting . 51
-semihosting-config . 51
-serial . 43
-set . 6
-show-cursor . 50

-singlestep . 46
-smbios . 29
-smp . 4
-snapshot . 18
-soundhw . 10
-spice . 23
-S . 46
-tb-size . 50
-tpmdev . 42
-trace . 52
-trace-unassigned . 52
-usb . 21
-usbdevice . 21
-uuid . 12
-version . 3
-vga . 25
-virtfs . 20
-virtfs_synth . 21
-vnc . 25
-watchdog . 49
-watchdog-action . 49
-win2k-hack . 28
-writeconfig . 52
-xen-attach . 48
-xen-domid . 47
-xen-domid-restrict . 48

A
acl_add . 75
acl_policy . 75
acl_remove . 75
acl_reset . 75
acl_show . 75
announce_self . 73

B
balloon . 75
block_job_cancel . 68
block_job_complete . 68
block_job_pause . 68
block_job_resume . 68
block_job_set_speed . 68
block_passwd . 76
block_resize . 68
block_set_io_throttle . 76
block_stream . 68
boot_set . 72

Appendix E: Index 165

C
change . 69
chardev-add . 76
chardev-change . 76
chardev-remove . 77
chardev-send-break . 77
client_migrate_info . 74
closefd . 76
commit . 68
cont . 70
cpu . 72
cpu-add . 77

D
delvm . 70
device_add . 72
device_del . 72
drive_add . 74
drive_backup . 74
drive_del . 68
drive_mirror . 74
dump-guest-memory . 74
dump-skeys . 74

E
eject . 68
exit_preconfig . 68
expire_password . 76

G
gdbserver . 70
getfd . 76
gpa2hpa . 71
gpa2hva . 71
gva2gpa . 71

H
help . 68
hostfwd_add . 75
hostfwd_remove . 75

I
i . 71
info . 77
info balloon . 79
info block . 77
info block-jobs . 77
info blockstats . 77
info capture . 78
info chardev . 77
info cmma . 79
info cpus . 77
info cpustats . 78
info dump . 80
info history . 77
info hotpluggable-cpus . 80
info ioapic . 77
info iothreads . 79
info irq . 77
info jit . 78
info kvm . 78
info lapic . 77
info mem . 78
info memdev . 79
info memory-devices . 79
info memory_size_summary . 80
info mice . 78
info migrate . 79
info migrate_cache_size . 79
info migrate_capabilities 79
info migrate_parameters . 79
info mtree . 78
info name . 78
info network . 77
info numa . 78
info opcount . 78
info pci . 78
info pic . 77
info profile . 78
info qdm . 79
info qom-tree . 79
info qtree . 79
info ramblock . 80
info rdma . 78
info registers . 77
info rocker . 79
info rocker-of-dpa-flows . 79
info rocker-of-dpa-groups 79
info rocker-ports . 79
info roms . 79
info sev . 80
info skeys . 79
info snapshots . 78
info spice . 78
info status . 78
info sync-profile . 78
info tlb . 78
info tpm . 79
info trace-events . 79

Appendix E: Index 166

info usb . 78
info usbhost . 78
info usernet . 78
info uuid . 78
info version . 77
info vm-generation-id . 80
info vnc . 78

L
loadvm . 70
log . 69
logfile . 69

M
mce (x86) . 76
memsave . 72
migrate . 73
migrate_cancel . 73
migrate_continue . 73
migrate_incoming . 73
migrate_pause . 73
migrate_recover . 73
migrate_set_cache_size . 73
migrate_set_capability . 73
migrate_set_downtime . 73
migrate_set_parameter . 73
migrate_set_speed . 73
migrate_start_postcopy . 73
migration_mode . 74
mouse_button . 72
mouse_move . 72
mouse_set . 72

N
nbd_server_add . 75
nbd_server_remove . 76
nbd_server_start . 75
nbd_server_stop . 76
netdev_add . 74
netdev_del . 74
nmi . 72

O
o . 71
object_add . 74
object_del . 75

P
pcie_aer_inject_error . 74
pmemsave . 72
print . 71

Q
qemu-io . 77
quit . 68

R
ringbuf_read . 72
ringbuf_write . 72

S
savevm . 69
screendump . 69
sendkey . 71
set_link . 75
set_password . 76
singlestep . 70
snapshot_blkdev . 74
snapshot_blkdev_internal . 74
snapshot_delete_blkdev_internal 74
stop . 70
stopcapture . 72
sum . 71
sync-profile . 71
system_powerdown . 71
system_reset . 71
system_wakeup . 70

T
trace-event . 69
trace-file . 69

W
watchdog_action . 75
wavcapture . 72

X
x . 70
x_colo_lost_heartbeat . 73
xp . 70

E.3 Keystroke Index

This is a list of all keystrokes which have a special function in system emulation.

Appendix E: Index 167

Ctrl-a b . 67
Ctrl-a c . 67
Ctrl-a Ctrl-a . 67
Ctrl-a h . 67
Ctrl-a s . 67
Ctrl-a t . 67
Ctrl-a x . 67
Ctrl-Alt . 67
Ctrl-Alt-+ . 67

Ctrl-Alt-- . 67

Ctrl-Alt-f . 67

Ctrl-Alt-n . 67

Ctrl-Alt-u . 67

Ctrl-Down . 67

Ctrl-PageDown . 67

Ctrl-PageUp . 67

Ctrl-Up . 67

E.4 Program Index

(Index is nonexistent)

E.5 Data Type Index

This index could be used for qdev device names and options.

(Index is nonexistent)

E.6 Variable Index

(Index is nonexistent)

	Introduction
	Features

	QEMU PC System emulator
	Introduction
	Quick Start
	Invocation
	Standard options
	Block device options
	USB options
	Display options
	i386 target only
	Network options
	Character device options
	Bluetooth(R) options
	TPM device options
	Linux/Multiboot boot specific
	Debug/Expert options
	Generic object creation
	Device URL Syntax

	Keys in the graphical frontends
	Keys in the character backend multiplexer
	QEMU Monitor
	Commands
	Integer expressions

	CPU models
	Recommendations for KVM CPU model configuration on x86 hosts
	Preferred CPU models for Intel x86 hosts
	Important CPU features for Intel x86 hosts
	Preferred CPU models for AMD x86 hosts
	Important CPU features for AMD x86 hosts
	Default x86 CPU models
	Other non-recommended x86 CPUs

	Supported CPU model configurations on MIPS hosts
	Supported CPU models for MIPS32 hosts
	Supported CPU models for MIPS64 hosts
	Supported CPU models for nanoMIPS hosts
	Preferred CPU models for MIPS hosts

	Syntax for configuring CPU models
	QEMU command line
	Libvirt guest XML

	Disk Images
	Quick start for disk image creation
	Snapshot mode
	VM snapshots
	qemu-img Invocation
	qemu-nbd Invocation
	Disk image file formats
	Read-only formats

	Using host drives
	Linux
	Windows
	Mac OS X

	Virtual FAT disk images
	NBD access
	Sheepdog disk images
	iSCSI LUNs
	GlusterFS disk images
	Secure Shell (ssh) disk images
	NVMe disk images
	Disk image file locking

	Network emulation
	Using TAP network interfaces
	Linux host
	Windows host

	Using the user mode network stack
	Hubs
	Connecting emulated networks between QEMU instances

	Other Devices
	Inter-VM Shared Memory device
	Migration with ivshmem
	ivshmem and hugepages

	Direct Linux Boot
	USB emulation
	Connecting USB devices
	Using host USB devices on a Linux host

	VNC security
	Without passwords
	With passwords
	With x509 certificates
	With x509 certificates and client verification
	With x509 certificates, client verification and passwords
	With SASL authentication
	With x509 certificates and SASL authentication
	Configuring SASL mechanisms

	TLS setup for network services
	Setup the Certificate Authority
	Issuing server certificates
	Issuing client certificates
	TLS x509 credential configuration
	TLS Pre-Shared Keys (PSK)

	GDB usage
	Target OS specific information
	Linux
	Windows
	SVGA graphic modes support
	CPU usage reduction
	Windows 2000 disk full problem
	Windows 2000 shutdown
	Share a directory between Unix and Windows
	Windows XP security problem

	MS-DOS and FreeDOS
	CPU usage reduction

	QEMU System emulator for non PC targets
	PowerPC System emulator
	Sparc32 System emulator
	Sparc64 System emulator
	MIPS System emulator
	nanoMIPS System emulator

	ARM System emulator
	ColdFire System emulator
	Cris System emulator
	Microblaze System emulator
	SH4 System emulator
	Xtensa System emulator

	QEMU Guest Agent invocation
	QEMU User space emulator
	Supported Operating Systems
	Features
	Linux User space emulator
	Quick Start
	Wine launch
	Command line options
	Other binaries

	BSD User space emulator
	BSD Status
	Quick Start
	Command line options

	System requirements
	KVM kernel module

	Security
	Overview
	Security Requirements
	Virtualization Use Case
	Non-virtualization Use Case

	Architecture
	Guest Isolation
	Principle of Least Privilege
	Isolation mechanisms

	Sensitive configurations
	Monitor console (QMP and HMP)

	Implementation notes
	CPU emulation
	x86 and x86-64 emulation
	ARM emulation
	MIPS emulation
	PowerPC emulation
	Sparc32 and Sparc64 emulation
	Xtensa emulation

	Managed start up options

	Deprecated features
	System emulator command line arguments
	-machine enforce-config-section=on|off (since 3.1)
	-no-kvm (since 1.3.0)
	-usbdevice (since 2.10.0)
	-drive file=json:{...{'driver':'file'}} (since 3.0)
	-net ...,name=name (since 3.1)
	-smp (invalid topologies) (since 3.1)
	-vnc acl (since 4.0.0)
	QEMU_AUDIO_ environment variables and -audio-help (since 4.0)
	-mon ...,control=readline,pretty=on|off (since 4.1)
	-realtime (since 4.1)
	-virtfs_synth (since 4.1)
	-numa node,mem=size (since 4.1)
	-numa node (without memory specified) (since 4.1)
	-mem-path fallback to RAM (since 4.1)
	RISC-V -bios (since 4.1)

	QEMU Machine Protocol (QMP) commands
	block-dirty-bitmap-add "autoload" parameter (since 2.12.0)
	query-block result field dirty-bitmaps[i].status (since 4.0)
	query-cpus (since 2.12.0)
	query-cpus-fast "arch" output member (since 3.0.0)
	cpu-add (since 4.0)
	query-events (since 4.0)
	chardev client socket with 'wait' option (since 4.0)

	Human Monitor Protocol (HMP) commands
	The hub_id parameter of 'hostfwd_add' / 'hostfwd_remove' (since 3.1)
	cpu-add (since 4.0)
	acl_show, acl_reset, acl_policy, acl_add, acl_remove (since 4.0.0)

	Guest Emulator ISAs
	RISC-V ISA privledge specification version 1.09.1 (since 4.1)

	System emulator CPUS
	RISC-V ISA CPUs (since 4.1)
	RISC-V ISA CPUs (since 4.1)

	System emulator devices
	bluetooth (since 3.1)

	System emulator machines
	pc-0.12, pc-0.13, pc-0.14 and pc-0.15 (since 4.0)
	prep (PowerPC) (since 3.1)
	spike_v1.9.1 and spike_v1.10 (since 4.1)

	Device options
	Block device options
	"backing": "" (since 2.12.0)
	rbd keyvalue pair encoded filenames: "" (since 3.1.0)

	Related binaries
	qemu-nbd --partition (since 4.0.0)

	Build system
	Python 2 support (since 4.1.0)

	Backwards compatibility
	Runnability guarantee of CPU models (since 4.1.0)

	Supported build platforms
	Linux OS
	Windows
	macOS
	FreeBSD
	NetBSD
	OpenBSD

	License
	Index
	Concept Index
	Function Index
	Keystroke Index
	Program Index
	Data Type Index
	Variable Index

