File: | target-i386/kvm.c |
Location: | line 268, column 9 |
Description: | Pass-by-value argument in function call is undefined |
1 | /* | ||
2 | * QEMU KVM support | ||
3 | * | ||
4 | * Copyright (C) 2006-2008 Qumranet Technologies | ||
5 | * Copyright IBM, Corp. 2008 | ||
6 | * | ||
7 | * Authors: | ||
8 | * Anthony Liguori <aliguori@us.ibm.com> | ||
9 | * | ||
10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | ||
11 | * See the COPYING file in the top-level directory. | ||
12 | * | ||
13 | */ | ||
14 | |||
15 | #include <sys/types.h> | ||
16 | #include <sys/ioctl.h> | ||
17 | #include <sys/mman.h> | ||
18 | #include <sys/utsname.h> | ||
19 | |||
20 | #include <linux1/kvm.h> | ||
21 | #include <linux1/kvm_para.h> | ||
22 | |||
23 | #include "qemu-common.h" | ||
24 | #include "sysemu.h" | ||
25 | #include "kvm.h" | ||
26 | #include "cpu.h" | ||
27 | #include "gdbstub.h" | ||
28 | #include "host-utils.h" | ||
29 | #include "hw/pc.h" | ||
30 | #include "hw/apic.h" | ||
31 | #include "ioport.h" | ||
32 | #include "hyperv.h" | ||
33 | |||
34 | //#define DEBUG_KVM | ||
35 | |||
36 | #ifdef DEBUG_KVM | ||
37 | #define DPRINTF(fmt, ...)do { } while (0) \ | ||
38 | do { fprintf(stderrstderr, fmt, ## __VA_ARGS__); } while (0) | ||
39 | #else | ||
40 | #define DPRINTF(fmt, ...)do { } while (0) \ | ||
41 | do { } while (0) | ||
42 | #endif | ||
43 | |||
44 | #define MSR_KVM_WALL_CLOCK0x11 0x11 | ||
45 | #define MSR_KVM_SYSTEM_TIME0x12 0x12 | ||
46 | |||
47 | #ifndef BUS_MCEERR_AR4 | ||
48 | #define BUS_MCEERR_AR4 4 | ||
49 | #endif | ||
50 | #ifndef BUS_MCEERR_AO5 | ||
51 | #define BUS_MCEERR_AO5 5 | ||
52 | #endif | ||
53 | |||
54 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { | ||
55 | KVM_CAP_INFO(SET_TSS_ADDR){ "KVM_CAP_" "SET_TSS_ADDR", 4 }, | ||
56 | KVM_CAP_INFO(EXT_CPUID){ "KVM_CAP_" "EXT_CPUID", 7 }, | ||
57 | KVM_CAP_INFO(MP_STATE){ "KVM_CAP_" "MP_STATE", 14 }, | ||
58 | KVM_CAP_LAST_INFO{ ((void *)0), 0 } | ||
59 | }; | ||
60 | |||
61 | static bool_Bool has_msr_star; | ||
62 | static bool_Bool has_msr_hsave_pa; | ||
63 | static bool_Bool has_msr_tsc_deadline; | ||
64 | static bool_Bool has_msr_async_pf_en; | ||
65 | static bool_Bool has_msr_misc_enable; | ||
66 | static int lm_capable_kernel; | ||
67 | |||
68 | static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) | ||
69 | { | ||
70 | struct kvm_cpuid2 *cpuid; | ||
71 | int r, size; | ||
72 | |||
73 | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | ||
74 | cpuid = (struct kvm_cpuid2 *)g_malloc0(size); | ||
75 | cpuid->nent = max; | ||
76 | r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID(((2U|1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 + 8)) | (((0x05)) << 0) | ((((sizeof(struct kvm_cpuid2))) ) << ((0 +8)+8))), cpuid); | ||
77 | if (r == 0 && cpuid->nent >= max) { | ||
78 | r = -E2BIG7; | ||
79 | } | ||
80 | if (r < 0) { | ||
81 | if (r == -E2BIG7) { | ||
82 | g_free(cpuid); | ||
83 | return NULL((void *)0); | ||
84 | } else { | ||
85 | fprintf(stderrstderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", | ||
86 | strerror(-r)); | ||
87 | exit(1); | ||
88 | } | ||
89 | } | ||
90 | return cpuid; | ||
91 | } | ||
92 | |||
93 | struct kvm_para_features { | ||
94 | int cap; | ||
95 | int feature; | ||
96 | } para_features[] = { | ||
97 | { KVM_CAP_CLOCKSOURCE8, KVM_FEATURE_CLOCKSOURCE0 }, | ||
98 | { KVM_CAP_NOP_IO_DELAY12, KVM_FEATURE_NOP_IO_DELAY1 }, | ||
99 | { KVM_CAP_PV_MMU13, KVM_FEATURE_MMU_OP2 }, | ||
100 | { KVM_CAP_ASYNC_PF59, KVM_FEATURE_ASYNC_PF4 }, | ||
101 | { -1, -1 } | ||
102 | }; | ||
103 | |||
104 | static int get_para_features(KVMState *s) | ||
105 | { | ||
106 | int i, features = 0; | ||
107 | |||
108 | for (i = 0; i < ARRAY_SIZE(para_features)(sizeof(para_features) / sizeof((para_features)[0])) - 1; i++) { | ||
109 | if (kvm_check_extension(s, para_features[i].cap)) { | ||
110 | features |= (1 << para_features[i].feature); | ||
111 | } | ||
112 | } | ||
113 | |||
114 | return features; | ||
115 | } | ||
116 | |||
117 | |||
118 | uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, | ||
119 | uint32_t index, int reg) | ||
120 | { | ||
121 | struct kvm_cpuid2 *cpuid; | ||
122 | int i, max; | ||
123 | uint32_t ret = 0; | ||
124 | uint32_t cpuid_1_edx; | ||
125 | int has_kvm_features = 0; | ||
126 | |||
127 | max = 1; | ||
128 | while ((cpuid = try_get_cpuid(s, max)) == NULL((void *)0)) { | ||
129 | max *= 2; | ||
130 | } | ||
131 | |||
132 | for (i = 0; i < cpuid->nent; ++i) { | ||
133 | if (cpuid->entries[i].function == function && | ||
134 | cpuid->entries[i].index == index) { | ||
135 | if (cpuid->entries[i].function == KVM_CPUID_FEATURES0x40000001) { | ||
136 | has_kvm_features = 1; | ||
137 | } | ||
138 | switch (reg) { | ||
139 | case R_EAX0: | ||
140 | ret = cpuid->entries[i].eax; | ||
141 | break; | ||
142 | case R_EBX3: | ||
143 | ret = cpuid->entries[i].ebx; | ||
144 | break; | ||
145 | case R_ECX1: | ||
146 | ret = cpuid->entries[i].ecx; | ||
147 | break; | ||
148 | case R_EDX2: | ||
149 | ret = cpuid->entries[i].edx; | ||
150 | switch (function) { | ||
151 | case 1: | ||
152 | /* KVM before 2.6.30 misreports the following features */ | ||
153 | ret |= CPUID_MTRR(1 << 12) | CPUID_PAT(1 << 16) | CPUID_MCE(1 << 7) | CPUID_MCA(1 << 14); | ||
154 | break; | ||
155 | case 0x80000001: | ||
156 | /* On Intel, kvm returns cpuid according to the Intel spec, | ||
157 | * so add missing bits according to the AMD spec: | ||
158 | */ | ||
159 | cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX2); | ||
160 | ret |= cpuid_1_edx & 0x183f7ff; | ||
161 | break; | ||
162 | } | ||
163 | break; | ||
164 | } | ||
165 | } | ||
166 | } | ||
167 | |||
168 | g_free(cpuid); | ||
169 | |||
170 | /* fallback for older kernels */ | ||
171 | if (!has_kvm_features && (function == KVM_CPUID_FEATURES0x40000001)) { | ||
172 | ret = get_para_features(s); | ||
173 | } | ||
174 | |||
175 | return ret; | ||
176 | } | ||
177 | |||
178 | typedef struct HWPoisonPage { | ||
179 | ram_addr_t ram_addr; | ||
180 | QLIST_ENTRY(HWPoisonPage)struct { struct HWPoisonPage *le_next; struct HWPoisonPage ** le_prev; } list; | ||
181 | } HWPoisonPage; | ||
182 | |||
183 | static QLIST_HEAD(, HWPoisonPage)struct { struct HWPoisonPage *lh_first; } hwpoison_page_list = | ||
184 | QLIST_HEAD_INITIALIZER(hwpoison_page_list){ ((void *)0) }; | ||
185 | |||
186 | static void kvm_unpoison_all(void *param) | ||
187 | { | ||
188 | HWPoisonPage *page, *next_page; | ||
189 | |||
190 | QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page)for ((page) = ((&hwpoison_page_list)->lh_first); (page ) && ((next_page) = ((page)->list.le_next), 1); (page ) = (next_page)) { | ||
191 | QLIST_REMOVE(page, list)do { if ((page)->list.le_next != ((void *)0)) (page)->list .le_next->list.le_prev = (page)->list.le_prev; *(page)-> list.le_prev = (page)->list.le_next; } while ( 0); | ||
192 | qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE(1 << 12)); | ||
193 | g_free(page); | ||
194 | } | ||
195 | } | ||
196 | |||
197 | static void kvm_hwpoison_page_add(ram_addr_t ram_addr) | ||
198 | { | ||
199 | HWPoisonPage *page; | ||
200 | |||
201 | QLIST_FOREACH(page, &hwpoison_page_list, list)for ((page) = ((&hwpoison_page_list)->lh_first); (page ); (page) = ((page)->list.le_next)) { | ||
202 | if (page->ram_addr == ram_addr) { | ||
203 | return; | ||
204 | } | ||
205 | } | ||
206 | page = g_malloc(sizeof(HWPoisonPage)); | ||
207 | page->ram_addr = ram_addr; | ||
208 | QLIST_INSERT_HEAD(&hwpoison_page_list, page, list)do { if (((page)->list.le_next = (&hwpoison_page_list) ->lh_first) != ((void *)0)) (&hwpoison_page_list)-> lh_first->list.le_prev = &(page)->list.le_next; (& hwpoison_page_list)->lh_first = (page); (page)->list.le_prev = &(&hwpoison_page_list)->lh_first; } while ( 0); | ||
209 | } | ||
210 | |||
211 | static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, | ||
212 | int *max_banks) | ||
213 | { | ||
214 | int r; | ||
215 | |||
216 | r = kvm_check_extension(s, KVM_CAP_MCE31); | ||
217 | if (r > 0) { | ||
218 | *max_banks = r; | ||
219 | return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED(((2U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x9d)) << 0) | ((((sizeof(__u64)))) << ((0 + 8)+8))), mce_cap); | ||
220 | } | ||
221 | return -ENOSYS38; | ||
222 | } | ||
223 | |||
224 | static void kvm_mce_inject(CPUX86State *env, target_phys_addr_t paddr, int code) | ||
225 | { | ||
226 | uint64_t status = MCI_STATUS_VAL(1ULL<<63) | MCI_STATUS_UC(1ULL<<61) | MCI_STATUS_EN(1ULL<<60) | | ||
227 | MCI_STATUS_MISCV(1ULL<<59) | MCI_STATUS_ADDRV(1ULL<<58) | MCI_STATUS_S(1ULL<<56); | ||
228 | uint64_t mcg_status = MCG_STATUS_MCIP(1ULL<<2); | ||
229 | |||
230 | if (code == BUS_MCEERR_AR4) { | ||
231 | status |= MCI_STATUS_AR(1ULL<<55) | 0x134; | ||
232 | mcg_status |= MCG_STATUS_EIPV(1ULL<<1); | ||
233 | } else { | ||
234 | status |= 0xc0; | ||
235 | mcg_status |= MCG_STATUS_RIPV(1ULL<<0); | ||
236 | } | ||
237 | cpu_x86_inject_mce(NULL((void *)0), env, 9, status, mcg_status, paddr, | ||
238 | (MCM_ADDR_PHYS2 << 6) | 0xc, | ||
239 | cpu_x86_support_mca_broadcast(env) ? | ||
240 | MCE_INJECT_BROADCAST1 : 0); | ||
241 | } | ||
242 | |||
243 | static void hardware_memory_error(void) | ||
244 | { | ||
245 | fprintf(stderrstderr, "Hardware memory error!\n"); | ||
246 | exit(1); | ||
247 | } | ||
248 | |||
249 | int kvm_arch_on_sigbus_vcpu(CPUX86State *env, int code, void *addr) | ||
250 | { | ||
251 | ram_addr_t ram_addr; | ||
252 | target_phys_addr_t paddr; | ||
| |||
253 | |||
254 | if ((env->mcg_cap & MCG_SER_P(1ULL<<24)) && addr | ||
| |||
255 | && (code == BUS_MCEERR_AR4 || code == BUS_MCEERR_AO5)) { | ||
256 | if (qemu_ram_addr_from_host(addr, &ram_addr) || | ||
| |||
257 | !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) { | ||
258 | fprintf(stderrstderr, "Hardware memory error for memory used by " | ||
259 | "QEMU itself instead of guest system!\n"); | ||
260 | /* Hope we are lucky for AO MCE */ | ||
261 | if (code == BUS_MCEERR_AO5) { | ||
| |||
262 | return 0; | ||
263 | } else { | ||
264 | hardware_memory_error(); | ||
265 | } | ||
266 | } | ||
267 | kvm_hwpoison_page_add(ram_addr); | ||
268 | kvm_mce_inject(env, paddr, code); | ||
| |||
269 | } else { | ||
270 | if (code == BUS_MCEERR_AO5) { | ||
271 | return 0; | ||
272 | } else if (code == BUS_MCEERR_AR4) { | ||
273 | hardware_memory_error(); | ||
274 | } else { | ||
275 | return 1; | ||
276 | } | ||
277 | } | ||
278 | return 0; | ||
279 | } | ||
280 | |||
281 | int kvm_arch_on_sigbus(int code, void *addr) | ||
282 | { | ||
283 | if ((first_cpu->mcg_cap & MCG_SER_P(1ULL<<24)) && addr && code == BUS_MCEERR_AO5) { | ||
284 | ram_addr_t ram_addr; | ||
285 | target_phys_addr_t paddr; | ||
286 | |||
287 | /* Hope we are lucky for AO MCE */ | ||
288 | if (qemu_ram_addr_from_host(addr, &ram_addr) || | ||
289 | !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr, | ||
290 | &paddr)) { | ||
291 | fprintf(stderrstderr, "Hardware memory error for memory used by " | ||
292 | "QEMU itself instead of guest system!: %p\n", addr); | ||
293 | return 0; | ||
294 | } | ||
295 | kvm_hwpoison_page_add(ram_addr); | ||
296 | kvm_mce_inject(first_cpu, paddr, code); | ||
297 | } else { | ||
298 | if (code == BUS_MCEERR_AO5) { | ||
299 | return 0; | ||
300 | } else if (code == BUS_MCEERR_AR4) { | ||
301 | hardware_memory_error(); | ||
302 | } else { | ||
303 | return 1; | ||
304 | } | ||
305 | } | ||
306 | return 0; | ||
307 | } | ||
308 | |||
309 | static int kvm_inject_mce_oldstyle(CPUX86State *env) | ||
310 | { | ||
311 | if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK18) { | ||
312 | unsigned int bank, bank_num = env->mcg_cap & 0xff; | ||
313 | struct kvm_x86_mce mce; | ||
314 | |||
315 | env->exception_injected = -1; | ||
316 | |||
317 | /* | ||
318 | * There must be at least one bank in use if an MCE is pending. | ||
319 | * Find it and use its values for the event injection. | ||
320 | */ | ||
321 | for (bank = 0; bank < bank_num; bank++) { | ||
322 | if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL(1ULL<<63)) { | ||
323 | break; | ||
324 | } | ||
325 | } | ||
326 | assert(bank < bank_num)((bank < bank_num) ? (void) (0) : __assert_fail ("bank < bank_num" , "/home/stefan/src/qemu/qemu.org/qemu/target-i386/kvm.c", 326 , __PRETTY_FUNCTION__)); | ||
327 | |||
328 | mce.bank = bank; | ||
329 | mce.status = env->mce_banks[bank * 4 + 1]; | ||
330 | mce.mcg_status = env->mcg_status; | ||
331 | mce.addr = env->mce_banks[bank * 4 + 2]; | ||
332 | mce.misc = env->mce_banks[bank * 4 + 3]; | ||
333 | |||
334 | return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x9e)) << 0) | ((((sizeof(struct kvm_x86_mce)))) << ((0 +8)+8))), &mce); | ||
335 | } | ||
336 | return 0; | ||
337 | } | ||
338 | |||
339 | static void cpu_update_state(void *opaque, int running, RunState state) | ||
340 | { | ||
341 | CPUX86State *env = opaque; | ||
342 | |||
343 | if (running) { | ||
344 | env->tsc_valid = false0; | ||
345 | } | ||
346 | } | ||
347 | |||
348 | int kvm_arch_init_vcpu(CPUX86State *env) | ||
349 | { | ||
350 | struct { | ||
351 | struct kvm_cpuid2 cpuid; | ||
352 | struct kvm_cpuid_entry2 entries[100]; | ||
353 | } QEMU_PACKED__attribute__((packed)) cpuid_data; | ||
354 | KVMState *s = env->kvm_state; | ||
355 | uint32_t limit, i, j, cpuid_i; | ||
356 | uint32_t unused; | ||
357 | struct kvm_cpuid_entry2 *c; | ||
358 | uint32_t signature[3]; | ||
359 | int r; | ||
360 | |||
361 | env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX2); | ||
362 | |||
363 | i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR(1 << 31); | ||
364 | env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX1); | ||
365 | env->cpuid_ext_features |= i; | ||
366 | |||
367 | env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001, | ||
368 | 0, R_EDX2); | ||
369 | env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001, | ||
370 | 0, R_ECX1); | ||
371 | env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A, | ||
372 | 0, R_EDX2); | ||
373 | |||
374 | cpuid_i = 0; | ||
375 | |||
376 | /* Paravirtualization CPUIDs */ | ||
377 | c = &cpuid_data.entries[cpuid_i++]; | ||
378 | memset(c, 0, sizeof(*c)); | ||
379 | c->function = KVM_CPUID_SIGNATURE0x40000000; | ||
380 | if (!hyperv_enabled()) { | ||
381 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); | ||
382 | c->eax = 0; | ||
383 | } else { | ||
384 | memcpy(signature, "Microsoft Hv", 12); | ||
385 | c->eax = HYPERV_CPUID_MIN0x40000005; | ||
386 | } | ||
387 | c->ebx = signature[0]; | ||
388 | c->ecx = signature[1]; | ||
389 | c->edx = signature[2]; | ||
390 | |||
391 | c = &cpuid_data.entries[cpuid_i++]; | ||
392 | memset(c, 0, sizeof(*c)); | ||
393 | c->function = KVM_CPUID_FEATURES0x40000001; | ||
394 | c->eax = env->cpuid_kvm_features & | ||
395 | kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES0x40000001, 0, R_EAX0); | ||
396 | |||
397 | if (hyperv_enabled()) { | ||
398 | memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); | ||
399 | c->eax = signature[0]; | ||
400 | |||
401 | c = &cpuid_data.entries[cpuid_i++]; | ||
402 | memset(c, 0, sizeof(*c)); | ||
403 | c->function = HYPERV_CPUID_VERSION0x40000002; | ||
404 | c->eax = 0x00001bbc; | ||
405 | c->ebx = 0x00060001; | ||
406 | |||
407 | c = &cpuid_data.entries[cpuid_i++]; | ||
408 | memset(c, 0, sizeof(*c)); | ||
409 | c->function = HYPERV_CPUID_FEATURES0x40000003; | ||
410 | if (hyperv_relaxed_timing_enabled()) { | ||
411 | c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE(1 << 5); | ||
412 | } | ||
413 | if (hyperv_vapic_recommended()) { | ||
414 | c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE(1 << 5); | ||
415 | c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE(1 << 4); | ||
416 | } | ||
417 | |||
418 | c = &cpuid_data.entries[cpuid_i++]; | ||
419 | memset(c, 0, sizeof(*c)); | ||
420 | c->function = HYPERV_CPUID_ENLIGHTMENT_INFO0x40000004; | ||
421 | if (hyperv_relaxed_timing_enabled()) { | ||
422 | c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED(1 << 5); | ||
423 | } | ||
424 | if (hyperv_vapic_recommended()) { | ||
425 | c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED(1 << 3); | ||
426 | } | ||
427 | c->ebx = hyperv_get_spinlock_retries(); | ||
428 | |||
429 | c = &cpuid_data.entries[cpuid_i++]; | ||
430 | memset(c, 0, sizeof(*c)); | ||
431 | c->function = HYPERV_CPUID_IMPLEMENT_LIMITS0x40000005; | ||
432 | c->eax = 0x40; | ||
433 | c->ebx = 0x40; | ||
434 | |||
435 | c = &cpuid_data.entries[cpuid_i++]; | ||
436 | memset(c, 0, sizeof(*c)); | ||
437 | c->function = KVM_CPUID_SIGNATURE_NEXT0x40000100; | ||
438 | memcpy(signature, "KVMKVMKVM\0\0\0", 12); | ||
439 | c->eax = 0; | ||
440 | c->ebx = signature[0]; | ||
441 | c->ecx = signature[1]; | ||
442 | c->edx = signature[2]; | ||
443 | } | ||
444 | |||
445 | has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF4); | ||
446 | |||
447 | cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); | ||
448 | |||
449 | for (i = 0; i <= limit; i++) { | ||
450 | c = &cpuid_data.entries[cpuid_i++]; | ||
451 | |||
452 | switch (i) { | ||
453 | case 2: { | ||
454 | /* Keep reading function 2 till all the input is received */ | ||
455 | int times; | ||
456 | |||
457 | c->function = i; | ||
458 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC2 | | ||
459 | KVM_CPUID_FLAG_STATE_READ_NEXT4; | ||
460 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | ||
461 | times = c->eax & 0xff; | ||
462 | |||
463 | for (j = 1; j < times; ++j) { | ||
464 | c = &cpuid_data.entries[cpuid_i++]; | ||
465 | c->function = i; | ||
466 | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC2; | ||
467 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | ||
468 | } | ||
469 | break; | ||
470 | } | ||
471 | case 4: | ||
472 | case 0xb: | ||
473 | case 0xd: | ||
474 | for (j = 0; ; j++) { | ||
475 | if (i == 0xd && j == 64) { | ||
476 | break; | ||
477 | } | ||
478 | c->function = i; | ||
479 | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX1; | ||
480 | c->index = j; | ||
481 | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); | ||
482 | |||
483 | if (i == 4 && c->eax == 0) { | ||
484 | break; | ||
485 | } | ||
486 | if (i == 0xb && !(c->ecx & 0xff00)) { | ||
487 | break; | ||
488 | } | ||
489 | if (i == 0xd && c->eax == 0) { | ||
490 | continue; | ||
491 | } | ||
492 | c = &cpuid_data.entries[cpuid_i++]; | ||
493 | } | ||
494 | break; | ||
495 | default: | ||
496 | c->function = i; | ||
497 | c->flags = 0; | ||
498 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | ||
499 | break; | ||
500 | } | ||
501 | } | ||
502 | cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); | ||
503 | |||
504 | for (i = 0x80000000; i <= limit; i++) { | ||
505 | c = &cpuid_data.entries[cpuid_i++]; | ||
506 | |||
507 | c->function = i; | ||
508 | c->flags = 0; | ||
509 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | ||
510 | } | ||
511 | |||
512 | /* Call Centaur's CPUID instructions they are supported. */ | ||
513 | if (env->cpuid_xlevel2 > 0) { | ||
514 | env->cpuid_ext4_features &= | ||
515 | kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX2); | ||
516 | cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); | ||
517 | |||
518 | for (i = 0xC0000000; i <= limit; i++) { | ||
519 | c = &cpuid_data.entries[cpuid_i++]; | ||
520 | |||
521 | c->function = i; | ||
522 | c->flags = 0; | ||
523 | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | ||
524 | } | ||
525 | } | ||
526 | |||
527 | cpuid_data.cpuid.nent = cpuid_i; | ||
528 | |||
529 | if (((env->cpuid_version >> 8)&0xF) >= 6 | ||
530 | && (env->cpuid_features&(CPUID_MCE(1 << 7)|CPUID_MCA(1 << 14))) == (CPUID_MCE(1 << 7)|CPUID_MCA(1 << 14)) | ||
531 | && kvm_check_extension(env->kvm_state, KVM_CAP_MCE31) > 0) { | ||
532 | uint64_t mcg_cap; | ||
533 | int banks; | ||
534 | int ret; | ||
535 | |||
536 | ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks); | ||
537 | if (ret < 0) { | ||
538 | fprintf(stderrstderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); | ||
539 | return ret; | ||
540 | } | ||
541 | |||
542 | if (banks > MCE_BANKS_DEF10) { | ||
543 | banks = MCE_BANKS_DEF10; | ||
544 | } | ||
545 | mcg_cap &= MCE_CAP_DEF((1ULL<<8)|(1ULL<<24)); | ||
546 | mcg_cap |= banks; | ||
547 | ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x9c)) << 0) | ((((sizeof(__u64)))) << ((0 + 8)+8))), &mcg_cap); | ||
548 | if (ret < 0) { | ||
549 | fprintf(stderrstderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); | ||
550 | return ret; | ||
551 | } | ||
552 | |||
553 | env->mcg_cap = mcg_cap; | ||
554 | } | ||
555 | |||
556 | qemu_add_vm_change_state_handler(cpu_update_state, env); | ||
557 | |||
558 | cpuid_data.cpuid.padding = 0; | ||
559 | r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x90)) << 0) | ((((sizeof(struct kvm_cpuid2)))) << ((0 +8)+8))), &cpuid_data); | ||
560 | if (r) { | ||
561 | return r; | ||
562 | } | ||
563 | |||
564 | r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL60); | ||
565 | if (r && env->tsc_khz) { | ||
566 | r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ(((0U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0xa2)) << 0) | ((0) << ((0 +8)+8))), env->tsc_khz); | ||
567 | if (r < 0) { | ||
568 | fprintf(stderrstderr, "KVM_SET_TSC_KHZ failed\n"); | ||
569 | return r; | ||
570 | } | ||
571 | } | ||
572 | |||
573 | if (kvm_has_xsave()) { | ||
574 | env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); | ||
575 | } | ||
576 | |||
577 | return 0; | ||
578 | } | ||
579 | |||
580 | void kvm_arch_reset_vcpu(CPUX86State *env) | ||
581 | { | ||
582 | env->exception_injected = -1; | ||
583 | env->interrupt_injected = -1; | ||
584 | env->xcr0 = 1; | ||
585 | if (kvm_irqchip_in_kernel()(kvm_kernel_irqchip)) { | ||
586 | env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE0 : | ||
587 | KVM_MP_STATE_UNINITIALIZED1; | ||
588 | } else { | ||
589 | env->mp_state = KVM_MP_STATE_RUNNABLE0; | ||
590 | } | ||
591 | } | ||
592 | |||
593 | static int kvm_get_supported_msrs(KVMState *s) | ||
594 | { | ||
595 | static int kvm_supported_msrs; | ||
596 | int ret = 0; | ||
597 | |||
598 | /* first time */ | ||
599 | if (kvm_supported_msrs == 0) { | ||
600 | struct kvm_msr_list msr_list, *kvm_msr_list; | ||
601 | |||
602 | kvm_supported_msrs = -1; | ||
603 | |||
604 | /* Obtain MSR list from KVM. These are the MSRs that we must | ||
605 | * save/restore */ | ||
606 | msr_list.nmsrs = 0; | ||
607 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST(((2U|1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 + 8)) | (((0x02)) << 0) | ((((sizeof(struct kvm_msr_list) ))) << ((0 +8)+8))), &msr_list); | ||
608 | if (ret < 0 && ret != -E2BIG7) { | ||
609 | return ret; | ||
610 | } | ||
611 | /* Old kernel modules had a bug and could write beyond the provided | ||
612 | memory. Allocate at least a safe amount of 1K. */ | ||
613 | kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +(((1024) > (sizeof(msr_list) + msr_list.nmsrs * sizeof(msr_list .indices[0]))) ? (1024) : (sizeof(msr_list) + msr_list.nmsrs * sizeof(msr_list.indices[0]))) | ||
614 | msr_list.nmsrs *(((1024) > (sizeof(msr_list) + msr_list.nmsrs * sizeof(msr_list .indices[0]))) ? (1024) : (sizeof(msr_list) + msr_list.nmsrs * sizeof(msr_list.indices[0]))) | ||
615 | sizeof(msr_list.indices[0]))(((1024) > (sizeof(msr_list) + msr_list.nmsrs * sizeof(msr_list .indices[0]))) ? (1024) : (sizeof(msr_list) + msr_list.nmsrs * sizeof(msr_list.indices[0])))); | ||
616 | |||
617 | kvm_msr_list->nmsrs = msr_list.nmsrs; | ||
618 | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST(((2U|1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 + 8)) | (((0x02)) << 0) | ((((sizeof(struct kvm_msr_list) ))) << ((0 +8)+8))), kvm_msr_list); | ||
619 | if (ret >= 0) { | ||
620 | int i; | ||
621 | |||
622 | for (i = 0; i < kvm_msr_list->nmsrs; i++) { | ||
623 | if (kvm_msr_list->indices[i] == MSR_STAR0xc0000081) { | ||
624 | has_msr_star = true1; | ||
625 | continue; | ||
626 | } | ||
627 | if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA0xc0010117) { | ||
628 | has_msr_hsave_pa = true1; | ||
629 | continue; | ||
630 | } | ||
631 | if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE0x6e0) { | ||
632 | has_msr_tsc_deadline = true1; | ||
633 | continue; | ||
634 | } | ||
635 | if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE0x1a0) { | ||
636 | has_msr_misc_enable = true1; | ||
637 | continue; | ||
638 | } | ||
639 | } | ||
640 | } | ||
641 | |||
642 | g_free(kvm_msr_list); | ||
643 | } | ||
644 | |||
645 | return ret; | ||
646 | } | ||
647 | |||
648 | int kvm_arch_init(KVMState *s) | ||
649 | { | ||
650 | QemuOptsList *list = qemu_find_opts("machine"); | ||
651 | uint64_t identity_base = 0xfffbc000; | ||
652 | uint64_t shadow_mem; | ||
653 | int ret; | ||
654 | struct utsname utsname; | ||
655 | |||
656 | ret = kvm_get_supported_msrs(s); | ||
657 | if (ret < 0) { | ||
658 | return ret; | ||
659 | } | ||
660 | |||
661 | uname(&utsname); | ||
662 | lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; | ||
663 | |||
664 | /* | ||
665 | * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. | ||
666 | * In order to use vm86 mode, an EPT identity map and a TSS are needed. | ||
667 | * Since these must be part of guest physical memory, we need to allocate | ||
668 | * them, both by setting their start addresses in the kernel and by | ||
669 | * creating a corresponding e820 entry. We need 4 pages before the BIOS. | ||
670 | * | ||
671 | * Older KVM versions may not support setting the identity map base. In | ||
672 | * that case we need to stick with the default, i.e. a 256K maximum BIOS | ||
673 | * size. | ||
674 | */ | ||
675 | if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR37)) { | ||
676 | /* Allows up to 16M BIOSes. */ | ||
677 | identity_base = 0xfeffc000; | ||
678 | |||
679 | ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x48)) << 0) | ((((sizeof(__u64)))) << ((0 + 8)+8))), &identity_base); | ||
680 | if (ret < 0) { | ||
681 | return ret; | ||
682 | } | ||
683 | } | ||
684 | |||
685 | /* Set TSS base one page after EPT identity map. */ | ||
686 | ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR(((0U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x47)) << 0) | ((0) << ((0 +8)+8))), identity_base + 0x1000); | ||
687 | if (ret < 0) { | ||
688 | return ret; | ||
689 | } | ||
690 | |||
691 | /* Tell fw_cfg to notify the BIOS to reserve the range. */ | ||
692 | ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED2); | ||
693 | if (ret < 0) { | ||
694 | fprintf(stderrstderr, "e820_add_entry() table is full\n"); | ||
695 | return ret; | ||
696 | } | ||
697 | qemu_register_reset(kvm_unpoison_all, NULL((void *)0)); | ||
698 | |||
699 | if (!QTAILQ_EMPTY(&list->head)((&list->head)->tqh_first == ((void *)0))) { | ||
700 | shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head)((&list->head)->tqh_first), | ||
701 | "kvm_shadow_mem", -1); | ||
702 | if (shadow_mem != -1) { | ||
703 | shadow_mem /= 4096; | ||
704 | ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES(((0U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x44)) << 0) | ((0) << ((0 +8)+8))), shadow_mem); | ||
705 | if (ret < 0) { | ||
706 | return ret; | ||
707 | } | ||
708 | } | ||
709 | } | ||
710 | return 0; | ||
711 | } | ||
712 | |||
713 | static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | ||
714 | { | ||
715 | lhs->selector = rhs->selector; | ||
716 | lhs->base = rhs->base; | ||
717 | lhs->limit = rhs->limit; | ||
718 | lhs->type = 3; | ||
719 | lhs->present = 1; | ||
720 | lhs->dpl = 3; | ||
721 | lhs->db = 0; | ||
722 | lhs->s = 1; | ||
723 | lhs->l = 0; | ||
724 | lhs->g = 0; | ||
725 | lhs->avl = 0; | ||
726 | lhs->unusable = 0; | ||
727 | } | ||
728 | |||
729 | static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | ||
730 | { | ||
731 | unsigned flags = rhs->flags; | ||
732 | lhs->selector = rhs->selector; | ||
733 | lhs->base = rhs->base; | ||
734 | lhs->limit = rhs->limit; | ||
735 | lhs->type = (flags >> DESC_TYPE_SHIFT8) & 15; | ||
736 | lhs->present = (flags & DESC_P_MASK(1 << 15)) != 0; | ||
737 | lhs->dpl = (flags >> DESC_DPL_SHIFT13) & 3; | ||
738 | lhs->db = (flags >> DESC_B_SHIFT22) & 1; | ||
739 | lhs->s = (flags & DESC_S_MASK(1 << 12)) != 0; | ||
740 | lhs->l = (flags >> DESC_L_SHIFT21) & 1; | ||
741 | lhs->g = (flags & DESC_G_MASK(1 << 23)) != 0; | ||
742 | lhs->avl = (flags & DESC_AVL_MASK(1 << 20)) != 0; | ||
743 | lhs->unusable = 0; | ||
744 | lhs->padding = 0; | ||
745 | } | ||
746 | |||
747 | static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) | ||
748 | { | ||
749 | lhs->selector = rhs->selector; | ||
750 | lhs->base = rhs->base; | ||
751 | lhs->limit = rhs->limit; | ||
752 | lhs->flags = (rhs->type << DESC_TYPE_SHIFT8) | | ||
753 | (rhs->present * DESC_P_MASK(1 << 15)) | | ||
754 | (rhs->dpl << DESC_DPL_SHIFT13) | | ||
755 | (rhs->db << DESC_B_SHIFT22) | | ||
756 | (rhs->s * DESC_S_MASK(1 << 12)) | | ||
757 | (rhs->l << DESC_L_SHIFT21) | | ||
758 | (rhs->g * DESC_G_MASK(1 << 23)) | | ||
759 | (rhs->avl * DESC_AVL_MASK(1 << 20)); | ||
760 | } | ||
761 | |||
762 | static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) | ||
763 | { | ||
764 | if (set) { | ||
765 | *kvm_reg = *qemu_reg; | ||
766 | } else { | ||
767 | *qemu_reg = *kvm_reg; | ||
768 | } | ||
769 | } | ||
770 | |||
771 | static int kvm_getput_regs(CPUX86State *env, int set) | ||
772 | { | ||
773 | struct kvm_regs regs; | ||
774 | int ret = 0; | ||
775 | |||
776 | if (!set) { | ||
777 | ret = kvm_vcpu_ioctl(env, KVM_GET_REGS(((2U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x81)) << 0) | ((((sizeof(struct kvm_regs)))) << ((0 +8)+8))), ®s); | ||
778 | if (ret < 0) { | ||
779 | return ret; | ||
780 | } | ||
781 | } | ||
782 | |||
783 | kvm_getput_reg(®s.rax, &env->regs[R_EAX0], set); | ||
784 | kvm_getput_reg(®s.rbx, &env->regs[R_EBX3], set); | ||
785 | kvm_getput_reg(®s.rcx, &env->regs[R_ECX1], set); | ||
786 | kvm_getput_reg(®s.rdx, &env->regs[R_EDX2], set); | ||
787 | kvm_getput_reg(®s.rsi, &env->regs[R_ESI6], set); | ||
788 | kvm_getput_reg(®s.rdi, &env->regs[R_EDI7], set); | ||
789 | kvm_getput_reg(®s.rsp, &env->regs[R_ESP4], set); | ||
790 | kvm_getput_reg(®s.rbp, &env->regs[R_EBP5], set); | ||
791 | #ifdef TARGET_X86_64 | ||
792 | kvm_getput_reg(®s.r8, &env->regs[8], set); | ||
793 | kvm_getput_reg(®s.r9, &env->regs[9], set); | ||
794 | kvm_getput_reg(®s.r10, &env->regs[10], set); | ||
795 | kvm_getput_reg(®s.r11, &env->regs[11], set); | ||
796 | kvm_getput_reg(®s.r12, &env->regs[12], set); | ||
797 | kvm_getput_reg(®s.r13, &env->regs[13], set); | ||
798 | kvm_getput_reg(®s.r14, &env->regs[14], set); | ||
799 | kvm_getput_reg(®s.r15, &env->regs[15], set); | ||
800 | #endif | ||
801 | |||
802 | kvm_getput_reg(®s.rflags, &env->eflags, set); | ||
803 | kvm_getput_reg(®s.rip, &env->eip, set); | ||
804 | |||
805 | if (set) { | ||
806 | ret = kvm_vcpu_ioctl(env, KVM_SET_REGS(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x82)) << 0) | ((((sizeof(struct kvm_regs)))) << ((0 +8)+8))), ®s); | ||
807 | } | ||
808 | |||
809 | return ret; | ||
810 | } | ||
811 | |||
812 | static int kvm_put_fpu(CPUX86State *env) | ||
813 | { | ||
814 | struct kvm_fpu fpu; | ||
815 | int i; | ||
816 | |||
817 | memset(&fpu, 0, sizeof fpu); | ||
818 | fpu.fsw = env->fpus & ~(7 << 11); | ||
819 | fpu.fsw |= (env->fpstt & 7) << 11; | ||
820 | fpu.fcw = env->fpuc; | ||
821 | fpu.last_opcode = env->fpop; | ||
822 | fpu.last_ip = env->fpip; | ||
823 | fpu.last_dp = env->fpdp; | ||
824 | for (i = 0; i < 8; ++i) { | ||
825 | fpu.ftwx |= (!env->fptags[i]) << i; | ||
826 | } | ||
827 | memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); | ||
828 | memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs); | ||
829 | fpu.mxcsr = env->mxcsr; | ||
830 | |||
831 | return kvm_vcpu_ioctl(env, KVM_SET_FPU(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x8d)) << 0) | ((((sizeof(struct kvm_fpu)))) << ((0 +8)+8))), &fpu); | ||
832 | } | ||
833 | |||
834 | #define XSAVE_FCW_FSW0 0 | ||
835 | #define XSAVE_FTW_FOP1 1 | ||
836 | #define XSAVE_CWD_RIP2 2 | ||
837 | #define XSAVE_CWD_RDP4 4 | ||
838 | #define XSAVE_MXCSR6 6 | ||
839 | #define XSAVE_ST_SPACE8 8 | ||
840 | #define XSAVE_XMM_SPACE40 40 | ||
841 | #define XSAVE_XSTATE_BV128 128 | ||
842 | #define XSAVE_YMMH_SPACE144 144 | ||
843 | |||
844 | static int kvm_put_xsave(CPUX86State *env) | ||
845 | { | ||
846 | struct kvm_xsave* xsave = env->kvm_xsave_buf; | ||
847 | uint16_t cwd, swd, twd; | ||
848 | int i, r; | ||
849 | |||
850 | if (!kvm_has_xsave()) { | ||
851 | return kvm_put_fpu(env); | ||
852 | } | ||
853 | |||
854 | memset(xsave, 0, sizeof(struct kvm_xsave)); | ||
855 | twd = 0; | ||
856 | swd = env->fpus & ~(7 << 11); | ||
857 | swd |= (env->fpstt & 7) << 11; | ||
858 | cwd = env->fpuc; | ||
859 | for (i = 0; i < 8; ++i) { | ||
860 | twd |= (!env->fptags[i]) << i; | ||
861 | } | ||
862 | xsave->region[XSAVE_FCW_FSW0] = (uint32_t)(swd << 16) + cwd; | ||
863 | xsave->region[XSAVE_FTW_FOP1] = (uint32_t)(env->fpop << 16) + twd; | ||
864 | memcpy(&xsave->region[XSAVE_CWD_RIP2], &env->fpip, sizeof(env->fpip)); | ||
865 | memcpy(&xsave->region[XSAVE_CWD_RDP4], &env->fpdp, sizeof(env->fpdp)); | ||
866 | memcpy(&xsave->region[XSAVE_ST_SPACE8], env->fpregs, | ||
867 | sizeof env->fpregs); | ||
868 | memcpy(&xsave->region[XSAVE_XMM_SPACE40], env->xmm_regs, | ||
869 | sizeof env->xmm_regs); | ||
870 | xsave->region[XSAVE_MXCSR6] = env->mxcsr; | ||
871 | *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV128] = env->xstate_bv; | ||
872 | memcpy(&xsave->region[XSAVE_YMMH_SPACE144], env->ymmh_regs, | ||
873 | sizeof env->ymmh_regs); | ||
874 | r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0xa5)) << 0) | ((((sizeof(struct kvm_xsave)))) << ((0 +8)+8))), xsave); | ||
875 | return r; | ||
876 | } | ||
877 | |||
878 | static int kvm_put_xcrs(CPUX86State *env) | ||
879 | { | ||
880 | struct kvm_xcrs xcrs; | ||
881 | |||
882 | if (!kvm_has_xcrs()) { | ||
883 | return 0; | ||
884 | } | ||
885 | |||
886 | xcrs.nr_xcrs = 1; | ||
887 | xcrs.flags = 0; | ||
888 | xcrs.xcrs[0].xcr = 0; | ||
889 | xcrs.xcrs[0].value = env->xcr0; | ||
890 | return kvm_vcpu_ioctl(env, KVM_SET_XCRS(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0xa7)) << 0) | ((((sizeof(struct kvm_xcrs)))) << ((0 +8)+8))), &xcrs); | ||
891 | } | ||
892 | |||
893 | static int kvm_put_sregs(CPUX86State *env) | ||
894 | { | ||
895 | struct kvm_sregs sregs; | ||
896 | |||
897 | memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); | ||
898 | if (env->interrupt_injected >= 0) { | ||
899 | sregs.interrupt_bitmap[env->interrupt_injected / 64] |= | ||
900 | (uint64_t)1 << (env->interrupt_injected % 64); | ||
901 | } | ||
902 | |||
903 | if ((env->eflags & VM_MASK0x00020000)) { | ||
904 | set_v8086_seg(&sregs.cs, &env->segs[R_CS1]); | ||
905 | set_v8086_seg(&sregs.ds, &env->segs[R_DS3]); | ||
906 | set_v8086_seg(&sregs.es, &env->segs[R_ES0]); | ||
907 | set_v8086_seg(&sregs.fs, &env->segs[R_FS4]); | ||
908 | set_v8086_seg(&sregs.gs, &env->segs[R_GS5]); | ||
909 | set_v8086_seg(&sregs.ss, &env->segs[R_SS2]); | ||
910 | } else { | ||
911 | set_seg(&sregs.cs, &env->segs[R_CS1]); | ||
912 | set_seg(&sregs.ds, &env->segs[R_DS3]); | ||
913 | set_seg(&sregs.es, &env->segs[R_ES0]); | ||
914 | set_seg(&sregs.fs, &env->segs[R_FS4]); | ||
915 | set_seg(&sregs.gs, &env->segs[R_GS5]); | ||
916 | set_seg(&sregs.ss, &env->segs[R_SS2]); | ||
917 | } | ||
918 | |||
919 | set_seg(&sregs.tr, &env->tr); | ||
920 | set_seg(&sregs.ldt, &env->ldt); | ||
921 | |||
922 | sregs.idt.limit = env->idt.limit; | ||
923 | sregs.idt.base = env->idt.base; | ||
924 | memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); | ||
925 | sregs.gdt.limit = env->gdt.limit; | ||
926 | sregs.gdt.base = env->gdt.base; | ||
927 | memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); | ||
928 | |||
929 | sregs.cr0 = env->cr[0]; | ||
930 | sregs.cr2 = env->cr[2]; | ||
931 | sregs.cr3 = env->cr[3]; | ||
932 | sregs.cr4 = env->cr[4]; | ||
933 | |||
934 | sregs.cr8 = cpu_get_apic_tpr(env->apic_state); | ||
935 | sregs.apic_base = cpu_get_apic_base(env->apic_state); | ||
936 | |||
937 | sregs.efer = env->efer; | ||
938 | |||
939 | return kvm_vcpu_ioctl(env, KVM_SET_SREGS(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x84)) << 0) | ((((sizeof(struct kvm_sregs)))) << ((0 +8)+8))), &sregs); | ||
940 | } | ||
941 | |||
942 | static void kvm_msr_entry_set(struct kvm_msr_entry *entry, | ||
943 | uint32_t index, uint64_t value) | ||
944 | { | ||
945 | entry->index = index; | ||
946 | entry->data = value; | ||
947 | } | ||
948 | |||
949 | static int kvm_put_msrs(CPUX86State *env, int level) | ||
950 | { | ||
951 | struct { | ||
952 | struct kvm_msrs info; | ||
953 | struct kvm_msr_entry entries[100]; | ||
954 | } msr_data; | ||
955 | struct kvm_msr_entry *msrs = msr_data.entries; | ||
956 | int n = 0; | ||
957 | |||
958 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS0x174, env->sysenter_cs); | ||
959 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP0x175, env->sysenter_esp); | ||
960 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP0x176, env->sysenter_eip); | ||
961 | kvm_msr_entry_set(&msrs[n++], MSR_PAT0x277, env->pat); | ||
962 | if (has_msr_star) { | ||
963 | kvm_msr_entry_set(&msrs[n++], MSR_STAR0xc0000081, env->star); | ||
964 | } | ||
965 | if (has_msr_hsave_pa) { | ||
966 | kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA0xc0010117, env->vm_hsave); | ||
967 | } | ||
968 | if (has_msr_tsc_deadline) { | ||
969 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE0x6e0, env->tsc_deadline); | ||
970 | } | ||
971 | if (has_msr_misc_enable) { | ||
972 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE0x1a0, | ||
973 | env->msr_ia32_misc_enable); | ||
974 | } | ||
975 | #ifdef TARGET_X86_64 | ||
976 | if (lm_capable_kernel) { | ||
977 | kvm_msr_entry_set(&msrs[n++], MSR_CSTAR0xc0000083, env->cstar); | ||
978 | kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE0xc0000102, env->kernelgsbase); | ||
979 | kvm_msr_entry_set(&msrs[n++], MSR_FMASK0xc0000084, env->fmask); | ||
980 | kvm_msr_entry_set(&msrs[n++], MSR_LSTAR0xc0000082, env->lstar); | ||
981 | } | ||
982 | #endif | ||
983 | if (level == KVM_PUT_FULL_STATE3) { | ||
984 | /* | ||
985 | * KVM is yet unable to synchronize TSC values of multiple VCPUs on | ||
986 | * writeback. Until this is fixed, we only write the offset to SMP | ||
987 | * guests after migration, desynchronizing the VCPUs, but avoiding | ||
988 | * huge jump-backs that would occur without any writeback at all. | ||
989 | */ | ||
990 | if (smp_cpus == 1 || env->tsc != 0) { | ||
991 | kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC0x10, env->tsc); | ||
992 | } | ||
993 | } | ||
994 | /* | ||
995 | * The following paravirtual MSRs have side effects on the guest or are | ||
996 | * too heavy for normal writeback. Limit them to reset or full state | ||
997 | * updates. | ||
998 | */ | ||
999 | if (level >= KVM_PUT_RESET_STATE2) { | ||
1000 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME0x12, | ||
1001 | env->system_time_msr); | ||
1002 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK0x11, env->wall_clock_msr); | ||
1003 | if (has_msr_async_pf_en) { | ||
1004 | kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN0x4b564d02, | ||
1005 | env->async_pf_en_msr); | ||
1006 | } | ||
1007 | if (hyperv_hypercall_available()) { | ||
1008 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID0x40000000, 0); | ||
1009 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL0x40000001, 0); | ||
1010 | } | ||
1011 | if (hyperv_vapic_recommended()) { | ||
1012 | kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE0x40000073, 0); | ||
1013 | } | ||
1014 | } | ||
1015 | if (env->mcg_cap) { | ||
1016 | int i; | ||
1017 | |||
1018 | kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS0x17a, env->mcg_status); | ||
1019 | kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL0x17b, env->mcg_ctl); | ||
1020 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { | ||
1021 | kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL0x400 + i, env->mce_banks[i]); | ||
1022 | } | ||
1023 | } | ||
1024 | |||
1025 | msr_data.info.nmsrs = n; | ||
1026 | |||
1027 | return kvm_vcpu_ioctl(env, KVM_SET_MSRS(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x89)) << 0) | ((((sizeof(struct kvm_msrs)))) << ((0 +8)+8))), &msr_data); | ||
1028 | |||
1029 | } | ||
1030 | |||
1031 | |||
1032 | static int kvm_get_fpu(CPUX86State *env) | ||
1033 | { | ||
1034 | struct kvm_fpu fpu; | ||
1035 | int i, ret; | ||
1036 | |||
1037 | ret = kvm_vcpu_ioctl(env, KVM_GET_FPU(((2U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x8c)) << 0) | ((((sizeof(struct kvm_fpu)))) << ((0 +8)+8))), &fpu); | ||
1038 | if (ret < 0) { | ||
1039 | return ret; | ||
1040 | } | ||
1041 | |||
1042 | env->fpstt = (fpu.fsw >> 11) & 7; | ||
1043 | env->fpus = fpu.fsw; | ||
1044 | env->fpuc = fpu.fcw; | ||
1045 | env->fpop = fpu.last_opcode; | ||
1046 | env->fpip = fpu.last_ip; | ||
1047 | env->fpdp = fpu.last_dp; | ||
1048 | for (i = 0; i < 8; ++i) { | ||
1049 | env->fptags[i] = !((fpu.ftwx >> i) & 1); | ||
1050 | } | ||
1051 | memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); | ||
1052 | memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs); | ||
1053 | env->mxcsr = fpu.mxcsr; | ||
1054 | |||
1055 | return 0; | ||
1056 | } | ||
1057 | |||
1058 | static int kvm_get_xsave(CPUX86State *env) | ||
1059 | { | ||
1060 | struct kvm_xsave* xsave = env->kvm_xsave_buf; | ||
1061 | int ret, i; | ||
1062 | uint16_t cwd, swd, twd; | ||
1063 | |||
1064 | if (!kvm_has_xsave()) { | ||
1065 | return kvm_get_fpu(env); | ||
1066 | } | ||
1067 | |||
1068 | ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE(((2U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0xa4)) << 0) | ((((sizeof(struct kvm_xsave)))) << ((0 +8)+8))), xsave); | ||
1069 | if (ret < 0) { | ||
1070 | return ret; | ||
1071 | } | ||
1072 | |||
1073 | cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW0]; | ||
1074 | swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW0] >> 16); | ||
1075 | twd = (uint16_t)xsave->region[XSAVE_FTW_FOP1]; | ||
1076 | env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP1] >> 16); | ||
1077 | env->fpstt = (swd >> 11) & 7; | ||
1078 | env->fpus = swd; | ||
1079 | env->fpuc = cwd; | ||
1080 | for (i = 0; i < 8; ++i) { | ||
1081 | env->fptags[i] = !((twd >> i) & 1); | ||
1082 | } | ||
1083 | memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP2], sizeof(env->fpip)); | ||
1084 | memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP4], sizeof(env->fpdp)); | ||
1085 | env->mxcsr = xsave->region[XSAVE_MXCSR6]; | ||
1086 | memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE8], | ||
1087 | sizeof env->fpregs); | ||
1088 | memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE40], | ||
1089 | sizeof env->xmm_regs); | ||
1090 | env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV128]; | ||
1091 | memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE144], | ||
1092 | sizeof env->ymmh_regs); | ||
1093 | return 0; | ||
1094 | } | ||
1095 | |||
1096 | static int kvm_get_xcrs(CPUX86State *env) | ||
1097 | { | ||
1098 | int i, ret; | ||
1099 | struct kvm_xcrs xcrs; | ||
1100 | |||
1101 | if (!kvm_has_xcrs()) { | ||
1102 | return 0; | ||
1103 | } | ||
1104 | |||
1105 | ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS(((2U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0xa6)) << 0) | ((((sizeof(struct kvm_xcrs)))) << ((0 +8)+8))), &xcrs); | ||
1106 | if (ret < 0) { | ||
1107 | return ret; | ||
1108 | } | ||
1109 | |||
1110 | for (i = 0; i < xcrs.nr_xcrs; i++) { | ||
1111 | /* Only support xcr0 now */ | ||
1112 | if (xcrs.xcrs[0].xcr == 0) { | ||
1113 | env->xcr0 = xcrs.xcrs[0].value; | ||
1114 | break; | ||
1115 | } | ||
1116 | } | ||
1117 | return 0; | ||
1118 | } | ||
1119 | |||
1120 | static int kvm_get_sregs(CPUX86State *env) | ||
1121 | { | ||
1122 | struct kvm_sregs sregs; | ||
1123 | uint32_t hflags; | ||
1124 | int bit, i, ret; | ||
1125 | |||
1126 | ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS(((2U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x83)) << 0) | ((((sizeof(struct kvm_sregs)))) << ((0 +8)+8))), &sregs); | ||
1127 | if (ret < 0) { | ||
1128 | return ret; | ||
1129 | } | ||
1130 | |||
1131 | /* There can only be one pending IRQ set in the bitmap at a time, so try | ||
1132 | to find it and save its number instead (-1 for none). */ | ||
1133 | env->interrupt_injected = -1; | ||
1134 | for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap)(sizeof(sregs.interrupt_bitmap) / sizeof((sregs.interrupt_bitmap )[0])); i++) { | ||
1135 | if (sregs.interrupt_bitmap[i]) { | ||
1136 | bit = ctz64(sregs.interrupt_bitmap[i]); | ||
1137 | env->interrupt_injected = i * 64 + bit; | ||
1138 | break; | ||
1139 | } | ||
1140 | } | ||
1141 | |||
1142 | get_seg(&env->segs[R_CS1], &sregs.cs); | ||
1143 | get_seg(&env->segs[R_DS3], &sregs.ds); | ||
1144 | get_seg(&env->segs[R_ES0], &sregs.es); | ||
1145 | get_seg(&env->segs[R_FS4], &sregs.fs); | ||
1146 | get_seg(&env->segs[R_GS5], &sregs.gs); | ||
1147 | get_seg(&env->segs[R_SS2], &sregs.ss); | ||
1148 | |||
1149 | get_seg(&env->tr, &sregs.tr); | ||
1150 | get_seg(&env->ldt, &sregs.ldt); | ||
1151 | |||
1152 | env->idt.limit = sregs.idt.limit; | ||
1153 | env->idt.base = sregs.idt.base; | ||
1154 | env->gdt.limit = sregs.gdt.limit; | ||
1155 | env->gdt.base = sregs.gdt.base; | ||
1156 | |||
1157 | env->cr[0] = sregs.cr0; | ||
1158 | env->cr[2] = sregs.cr2; | ||
1159 | env->cr[3] = sregs.cr3; | ||
1160 | env->cr[4] = sregs.cr4; | ||
1161 | |||
1162 | env->efer = sregs.efer; | ||
1163 | |||
1164 | /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ | ||
1165 | |||
1166 | #define HFLAG_COPY_MASK~( (3 << 0) | (1 << 7) | (1 << 9) | (1 << 10) | (1 << 11) | (1 << 8) | (1 << 17) | ( 3 << 12) | (1 << 22) | (1 << 14) | (1 << 4) | (1 << 5) | (1 << 15) | (1 << 6)) \ | ||
1167 | ~( HF_CPL_MASK(3 << 0) | HF_PE_MASK(1 << 7) | HF_MP_MASK(1 << 9) | HF_EM_MASK(1 << 10) | \ | ||
1168 | HF_TS_MASK(1 << 11) | HF_TF_MASK(1 << 8) | HF_VM_MASK(1 << 17) | HF_IOPL_MASK(3 << 12) | \ | ||
1169 | HF_OSFXSR_MASK(1 << 22) | HF_LMA_MASK(1 << 14) | HF_CS32_MASK(1 << 4) | \ | ||
1170 | HF_SS32_MASK(1 << 5) | HF_CS64_MASK(1 << 15) | HF_ADDSEG_MASK(1 << 6)) | ||
1171 | |||
1172 | hflags = (env->segs[R_CS1].flags >> DESC_DPL_SHIFT13) & HF_CPL_MASK(3 << 0); | ||
1173 | hflags |= (env->cr[0] & CR0_PE_MASK(1 << 0)) << (HF_PE_SHIFT7 - CR0_PE_SHIFT0); | ||
1174 | hflags |= (env->cr[0] << (HF_MP_SHIFT9 - CR0_MP_SHIFT1)) & | ||
1175 | (HF_MP_MASK(1 << 9) | HF_EM_MASK(1 << 10) | HF_TS_MASK(1 << 11)); | ||
1176 | hflags |= (env->eflags & (HF_TF_MASK(1 << 8) | HF_VM_MASK(1 << 17) | HF_IOPL_MASK(3 << 12))); | ||
1177 | hflags |= (env->cr[4] & CR4_OSFXSR_MASK(1 << 9)) << | ||
1178 | (HF_OSFXSR_SHIFT22 - CR4_OSFXSR_SHIFT9); | ||
1179 | |||
1180 | if (env->efer & MSR_EFER_LMA(1 << 10)) { | ||
1181 | hflags |= HF_LMA_MASK(1 << 14); | ||
1182 | } | ||
1183 | |||
1184 | if ((hflags & HF_LMA_MASK(1 << 14)) && (env->segs[R_CS1].flags & DESC_L_MASK(1 << 21))) { | ||
1185 | hflags |= HF_CS32_MASK(1 << 4) | HF_SS32_MASK(1 << 5) | HF_CS64_MASK(1 << 15); | ||
1186 | } else { | ||
1187 | hflags |= (env->segs[R_CS1].flags & DESC_B_MASK(1 << 22)) >> | ||
1188 | (DESC_B_SHIFT22 - HF_CS32_SHIFT4); | ||
1189 | hflags |= (env->segs[R_SS2].flags & DESC_B_MASK(1 << 22)) >> | ||
1190 | (DESC_B_SHIFT22 - HF_SS32_SHIFT5); | ||
1191 | if (!(env->cr[0] & CR0_PE_MASK(1 << 0)) || (env->eflags & VM_MASK0x00020000) || | ||
1192 | !(hflags & HF_CS32_MASK(1 << 4))) { | ||
1193 | hflags |= HF_ADDSEG_MASK(1 << 6); | ||
1194 | } else { | ||
1195 | hflags |= ((env->segs[R_DS3].base | env->segs[R_ES0].base | | ||
1196 | env->segs[R_SS2].base) != 0) << HF_ADDSEG_SHIFT6; | ||
1197 | } | ||
1198 | } | ||
1199 | env->hflags = (env->hflags & HFLAG_COPY_MASK~( (3 << 0) | (1 << 7) | (1 << 9) | (1 << 10) | (1 << 11) | (1 << 8) | (1 << 17) | ( 3 << 12) | (1 << 22) | (1 << 14) | (1 << 4) | (1 << 5) | (1 << 15) | (1 << 6))) | hflags; | ||
1200 | |||
1201 | return 0; | ||
1202 | } | ||
1203 | |||
1204 | static int kvm_get_msrs(CPUX86State *env) | ||
1205 | { | ||
1206 | struct { | ||
1207 | struct kvm_msrs info; | ||
1208 | struct kvm_msr_entry entries[100]; | ||
1209 | } msr_data; | ||
1210 | struct kvm_msr_entry *msrs = msr_data.entries; | ||
1211 | int ret, i, n; | ||
1212 | |||
1213 | n = 0; | ||
1214 | msrs[n++].index = MSR_IA32_SYSENTER_CS0x174; | ||
1215 | msrs[n++].index = MSR_IA32_SYSENTER_ESP0x175; | ||
1216 | msrs[n++].index = MSR_IA32_SYSENTER_EIP0x176; | ||
1217 | msrs[n++].index = MSR_PAT0x277; | ||
1218 | if (has_msr_star) { | ||
1219 | msrs[n++].index = MSR_STAR0xc0000081; | ||
1220 | } | ||
1221 | if (has_msr_hsave_pa) { | ||
1222 | msrs[n++].index = MSR_VM_HSAVE_PA0xc0010117; | ||
1223 | } | ||
1224 | if (has_msr_tsc_deadline) { | ||
1225 | msrs[n++].index = MSR_IA32_TSCDEADLINE0x6e0; | ||
1226 | } | ||
1227 | if (has_msr_misc_enable) { | ||
1228 | msrs[n++].index = MSR_IA32_MISC_ENABLE0x1a0; | ||
1229 | } | ||
1230 | |||
1231 | if (!env->tsc_valid) { | ||
1232 | msrs[n++].index = MSR_IA32_TSC0x10; | ||
1233 | env->tsc_valid = !runstate_is_running(); | ||
1234 | } | ||
1235 | |||
1236 | #ifdef TARGET_X86_64 | ||
1237 | if (lm_capable_kernel) { | ||
1238 | msrs[n++].index = MSR_CSTAR0xc0000083; | ||
1239 | msrs[n++].index = MSR_KERNELGSBASE0xc0000102; | ||
1240 | msrs[n++].index = MSR_FMASK0xc0000084; | ||
1241 | msrs[n++].index = MSR_LSTAR0xc0000082; | ||
1242 | } | ||
1243 | #endif | ||
1244 | msrs[n++].index = MSR_KVM_SYSTEM_TIME0x12; | ||
1245 | msrs[n++].index = MSR_KVM_WALL_CLOCK0x11; | ||
1246 | if (has_msr_async_pf_en) { | ||
1247 | msrs[n++].index = MSR_KVM_ASYNC_PF_EN0x4b564d02; | ||
1248 | } | ||
1249 | |||
1250 | if (env->mcg_cap) { | ||
1251 | msrs[n++].index = MSR_MCG_STATUS0x17a; | ||
1252 | msrs[n++].index = MSR_MCG_CTL0x17b; | ||
1253 | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { | ||
1254 | msrs[n++].index = MSR_MC0_CTL0x400 + i; | ||
1255 | } | ||
1256 | } | ||
1257 | |||
1258 | msr_data.info.nmsrs = n; | ||
1259 | ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS(((2U|1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 + 8)) | (((0x88)) << 0) | ((((sizeof(struct kvm_msrs)))) << ((0 +8)+8))), &msr_data); | ||
1260 | if (ret < 0) { | ||
1261 | return ret; | ||
1262 | } | ||
1263 | |||
1264 | for (i = 0; i < ret; i++) { | ||
1265 | switch (msrs[i].index) { | ||
1266 | case MSR_IA32_SYSENTER_CS0x174: | ||
1267 | env->sysenter_cs = msrs[i].data; | ||
1268 | break; | ||
1269 | case MSR_IA32_SYSENTER_ESP0x175: | ||
1270 | env->sysenter_esp = msrs[i].data; | ||
1271 | break; | ||
1272 | case MSR_IA32_SYSENTER_EIP0x176: | ||
1273 | env->sysenter_eip = msrs[i].data; | ||
1274 | break; | ||
1275 | case MSR_PAT0x277: | ||
1276 | env->pat = msrs[i].data; | ||
1277 | break; | ||
1278 | case MSR_STAR0xc0000081: | ||
1279 | env->star = msrs[i].data; | ||
1280 | break; | ||
1281 | #ifdef TARGET_X86_64 | ||
1282 | case MSR_CSTAR0xc0000083: | ||
1283 | env->cstar = msrs[i].data; | ||
1284 | break; | ||
1285 | case MSR_KERNELGSBASE0xc0000102: | ||
1286 | env->kernelgsbase = msrs[i].data; | ||
1287 | break; | ||
1288 | case MSR_FMASK0xc0000084: | ||
1289 | env->fmask = msrs[i].data; | ||
1290 | break; | ||
1291 | case MSR_LSTAR0xc0000082: | ||
1292 | env->lstar = msrs[i].data; | ||
1293 | break; | ||
1294 | #endif | ||
1295 | case MSR_IA32_TSC0x10: | ||
1296 | env->tsc = msrs[i].data; | ||
1297 | break; | ||
1298 | case MSR_IA32_TSCDEADLINE0x6e0: | ||
1299 | env->tsc_deadline = msrs[i].data; | ||
1300 | break; | ||
1301 | case MSR_VM_HSAVE_PA0xc0010117: | ||
1302 | env->vm_hsave = msrs[i].data; | ||
1303 | break; | ||
1304 | case MSR_KVM_SYSTEM_TIME0x12: | ||
1305 | env->system_time_msr = msrs[i].data; | ||
1306 | break; | ||
1307 | case MSR_KVM_WALL_CLOCK0x11: | ||
1308 | env->wall_clock_msr = msrs[i].data; | ||
1309 | break; | ||
1310 | case MSR_MCG_STATUS0x17a: | ||
1311 | env->mcg_status = msrs[i].data; | ||
1312 | break; | ||
1313 | case MSR_MCG_CTL0x17b: | ||
1314 | env->mcg_ctl = msrs[i].data; | ||
1315 | break; | ||
1316 | case MSR_IA32_MISC_ENABLE0x1a0: | ||
1317 | env->msr_ia32_misc_enable = msrs[i].data; | ||
1318 | break; | ||
1319 | default: | ||
1320 | if (msrs[i].index >= MSR_MC0_CTL0x400 && | ||
1321 | msrs[i].index < MSR_MC0_CTL0x400 + (env->mcg_cap & 0xff) * 4) { | ||
1322 | env->mce_banks[msrs[i].index - MSR_MC0_CTL0x400] = msrs[i].data; | ||
1323 | } | ||
1324 | break; | ||
1325 | case MSR_KVM_ASYNC_PF_EN0x4b564d02: | ||
1326 | env->async_pf_en_msr = msrs[i].data; | ||
1327 | break; | ||
1328 | } | ||
1329 | } | ||
1330 | |||
1331 | return 0; | ||
1332 | } | ||
1333 | |||
1334 | static int kvm_put_mp_state(CPUX86State *env) | ||
1335 | { | ||
1336 | struct kvm_mp_state mp_state = { .mp_state = env->mp_state }; | ||
1337 | |||
1338 | return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x99)) << 0) | ((((sizeof(struct kvm_mp_state)))) << ((0 +8)+8))), &mp_state); | ||
1339 | } | ||
1340 | |||
1341 | static int kvm_get_mp_state(CPUX86State *env) | ||
1342 | { | ||
1343 | struct kvm_mp_state mp_state; | ||
1344 | int ret; | ||
1345 | |||
1346 | ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE(((2U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x98)) << 0) | ((((sizeof(struct kvm_mp_state)))) << ((0 +8)+8))), &mp_state); | ||
1347 | if (ret < 0) { | ||
1348 | return ret; | ||
1349 | } | ||
1350 | env->mp_state = mp_state.mp_state; | ||
1351 | if (kvm_irqchip_in_kernel()(kvm_kernel_irqchip)) { | ||
1352 | env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED3); | ||
1353 | } | ||
1354 | return 0; | ||
1355 | } | ||
1356 | |||
1357 | static int kvm_get_apic(CPUX86State *env) | ||
1358 | { | ||
1359 | DeviceState *apic = env->apic_state; | ||
1360 | struct kvm_lapic_state kapic; | ||
1361 | int ret; | ||
1362 | |||
1363 | if (apic && kvm_irqchip_in_kernel()(kvm_kernel_irqchip)) { | ||
1364 | ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC(((2U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x8e)) << 0) | ((((sizeof(struct kvm_lapic_state) ))) << ((0 +8)+8))), &kapic); | ||
1365 | if (ret < 0) { | ||
1366 | return ret; | ||
1367 | } | ||
1368 | |||
1369 | kvm_get_apic_state(apic, &kapic); | ||
1370 | } | ||
1371 | return 0; | ||
1372 | } | ||
1373 | |||
1374 | static int kvm_put_apic(CPUX86State *env) | ||
1375 | { | ||
1376 | DeviceState *apic = env->apic_state; | ||
1377 | struct kvm_lapic_state kapic; | ||
1378 | |||
1379 | if (apic && kvm_irqchip_in_kernel()(kvm_kernel_irqchip)) { | ||
1380 | kvm_put_apic_state(apic, &kapic); | ||
1381 | |||
1382 | return kvm_vcpu_ioctl(env, KVM_SET_LAPIC(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x8f)) << 0) | ((((sizeof(struct kvm_lapic_state) ))) << ((0 +8)+8))), &kapic); | ||
1383 | } | ||
1384 | return 0; | ||
1385 | } | ||
1386 | |||
1387 | static int kvm_put_vcpu_events(CPUX86State *env, int level) | ||
1388 | { | ||
1389 | struct kvm_vcpu_events events; | ||
1390 | |||
1391 | if (!kvm_has_vcpu_events()) { | ||
1392 | return 0; | ||
1393 | } | ||
1394 | |||
1395 | events.exception.injected = (env->exception_injected >= 0); | ||
1396 | events.exception.nr = env->exception_injected; | ||
1397 | events.exception.has_error_code = env->has_error_code; | ||
1398 | events.exception.error_code = env->error_code; | ||
1399 | events.exception.pad = 0; | ||
1400 | |||
1401 | events.interrupt.injected = (env->interrupt_injected >= 0); | ||
1402 | events.interrupt.nr = env->interrupt_injected; | ||
1403 | events.interrupt.soft = env->soft_interrupt; | ||
1404 | |||
1405 | events.nmi.injected = env->nmi_injected; | ||
1406 | events.nmi.pending = env->nmi_pending; | ||
1407 | events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK(1 << 2)); | ||
1408 | events.nmi.pad = 0; | ||
1409 | |||
1410 | events.sipi_vector = env->sipi_vector; | ||
1411 | |||
1412 | events.flags = 0; | ||
1413 | if (level >= KVM_PUT_RESET_STATE2) { | ||
1414 | events.flags |= | ||
1415 | KVM_VCPUEVENT_VALID_NMI_PENDING0x00000001 | KVM_VCPUEVENT_VALID_SIPI_VECTOR0x00000002; | ||
1416 | } | ||
1417 | |||
1418 | return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0xa0)) << 0) | ((((sizeof(struct kvm_vcpu_events) ))) << ((0 +8)+8))), &events); | ||
1419 | } | ||
1420 | |||
1421 | static int kvm_get_vcpu_events(CPUX86State *env) | ||
1422 | { | ||
1423 | struct kvm_vcpu_events events; | ||
1424 | int ret; | ||
1425 | |||
1426 | if (!kvm_has_vcpu_events()) { | ||
1427 | return 0; | ||
1428 | } | ||
1429 | |||
1430 | ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS(((2U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x9f)) << 0) | ((((sizeof(struct kvm_vcpu_events) ))) << ((0 +8)+8))), &events); | ||
1431 | if (ret < 0) { | ||
1432 | return ret; | ||
1433 | } | ||
1434 | env->exception_injected = | ||
1435 | events.exception.injected ? events.exception.nr : -1; | ||
1436 | env->has_error_code = events.exception.has_error_code; | ||
1437 | env->error_code = events.exception.error_code; | ||
1438 | |||
1439 | env->interrupt_injected = | ||
1440 | events.interrupt.injected ? events.interrupt.nr : -1; | ||
1441 | env->soft_interrupt = events.interrupt.soft; | ||
1442 | |||
1443 | env->nmi_injected = events.nmi.injected; | ||
1444 | env->nmi_pending = events.nmi.pending; | ||
1445 | if (events.nmi.masked) { | ||
1446 | env->hflags2 |= HF2_NMI_MASK(1 << 2); | ||
1447 | } else { | ||
1448 | env->hflags2 &= ~HF2_NMI_MASK(1 << 2); | ||
1449 | } | ||
1450 | |||
1451 | env->sipi_vector = events.sipi_vector; | ||
1452 | |||
1453 | return 0; | ||
1454 | } | ||
1455 | |||
1456 | static int kvm_guest_debug_workarounds(CPUX86State *env) | ||
1457 | { | ||
1458 | int ret = 0; | ||
1459 | unsigned long reinject_trap = 0; | ||
1460 | |||
1461 | if (!kvm_has_vcpu_events()) { | ||
1462 | if (env->exception_injected == 1) { | ||
1463 | reinject_trap = KVM_GUESTDBG_INJECT_DB0x00040000; | ||
1464 | } else if (env->exception_injected == 3) { | ||
1465 | reinject_trap = KVM_GUESTDBG_INJECT_BP0x00080000; | ||
1466 | } | ||
1467 | env->exception_injected = -1; | ||
1468 | } | ||
1469 | |||
1470 | /* | ||
1471 | * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF | ||
1472 | * injected via SET_GUEST_DEBUG while updating GP regs. Work around this | ||
1473 | * by updating the debug state once again if single-stepping is on. | ||
1474 | * Another reason to call kvm_update_guest_debug here is a pending debug | ||
1475 | * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to | ||
1476 | * reinject them via SET_GUEST_DEBUG. | ||
1477 | */ | ||
1478 | if (reinject_trap || | ||
1479 | (!kvm_has_robust_singlestep() && env->singlestep_enabled)) { | ||
1480 | ret = kvm_update_guest_debug(env, reinject_trap); | ||
1481 | } | ||
1482 | return ret; | ||
1483 | } | ||
1484 | |||
1485 | static int kvm_put_debugregs(CPUX86State *env) | ||
1486 | { | ||
1487 | struct kvm_debugregs dbgregs; | ||
1488 | int i; | ||
1489 | |||
1490 | if (!kvm_has_debugregs()) { | ||
1491 | return 0; | ||
1492 | } | ||
1493 | |||
1494 | for (i = 0; i < 4; i++) { | ||
1495 | dbgregs.db[i] = env->dr[i]; | ||
1496 | } | ||
1497 | dbgregs.dr6 = env->dr[6]; | ||
1498 | dbgregs.dr7 = env->dr[7]; | ||
1499 | dbgregs.flags = 0; | ||
1500 | |||
1501 | return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0xa2)) << 0) | ((((sizeof(struct kvm_debugregs))) ) << ((0 +8)+8))), &dbgregs); | ||
1502 | } | ||
1503 | |||
1504 | static int kvm_get_debugregs(CPUX86State *env) | ||
1505 | { | ||
1506 | struct kvm_debugregs dbgregs; | ||
1507 | int i, ret; | ||
1508 | |||
1509 | if (!kvm_has_debugregs()) { | ||
1510 | return 0; | ||
1511 | } | ||
1512 | |||
1513 | ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS(((2U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0xa1)) << 0) | ((((sizeof(struct kvm_debugregs))) ) << ((0 +8)+8))), &dbgregs); | ||
1514 | if (ret < 0) { | ||
1515 | return ret; | ||
1516 | } | ||
1517 | for (i = 0; i < 4; i++) { | ||
1518 | env->dr[i] = dbgregs.db[i]; | ||
1519 | } | ||
1520 | env->dr[4] = env->dr[6] = dbgregs.dr6; | ||
1521 | env->dr[5] = env->dr[7] = dbgregs.dr7; | ||
1522 | |||
1523 | return 0; | ||
1524 | } | ||
1525 | |||
1526 | int kvm_arch_put_registers(CPUX86State *env, int level) | ||
1527 | { | ||
1528 | int ret; | ||
1529 | |||
1530 | assert(cpu_is_stopped(env) || qemu_cpu_is_self(env))((cpu_is_stopped(env) || qemu_cpu_is_self(env)) ? (void) (0) : __assert_fail ("cpu_is_stopped(env) || qemu_cpu_is_self(env)" , "/home/stefan/src/qemu/qemu.org/qemu/target-i386/kvm.c", 1530 , __PRETTY_FUNCTION__)); | ||
1531 | |||
1532 | ret = kvm_getput_regs(env, 1); | ||
1533 | if (ret < 0) { | ||
1534 | return ret; | ||
1535 | } | ||
1536 | ret = kvm_put_xsave(env); | ||
1537 | if (ret < 0) { | ||
1538 | return ret; | ||
1539 | } | ||
1540 | ret = kvm_put_xcrs(env); | ||
1541 | if (ret < 0) { | ||
1542 | return ret; | ||
1543 | } | ||
1544 | ret = kvm_put_sregs(env); | ||
1545 | if (ret < 0) { | ||
1546 | return ret; | ||
1547 | } | ||
1548 | /* must be before kvm_put_msrs */ | ||
1549 | ret = kvm_inject_mce_oldstyle(env); | ||
1550 | if (ret < 0) { | ||
1551 | return ret; | ||
1552 | } | ||
1553 | ret = kvm_put_msrs(env, level); | ||
1554 | if (ret < 0) { | ||
1555 | return ret; | ||
1556 | } | ||
1557 | if (level >= KVM_PUT_RESET_STATE2) { | ||
1558 | ret = kvm_put_mp_state(env); | ||
1559 | if (ret < 0) { | ||
1560 | return ret; | ||
1561 | } | ||
1562 | ret = kvm_put_apic(env); | ||
1563 | if (ret < 0) { | ||
1564 | return ret; | ||
1565 | } | ||
1566 | } | ||
1567 | ret = kvm_put_vcpu_events(env, level); | ||
1568 | if (ret < 0) { | ||
1569 | return ret; | ||
1570 | } | ||
1571 | ret = kvm_put_debugregs(env); | ||
1572 | if (ret < 0) { | ||
1573 | return ret; | ||
1574 | } | ||
1575 | /* must be last */ | ||
1576 | ret = kvm_guest_debug_workarounds(env); | ||
1577 | if (ret < 0) { | ||
1578 | return ret; | ||
1579 | } | ||
1580 | return 0; | ||
1581 | } | ||
1582 | |||
1583 | int kvm_arch_get_registers(CPUX86State *env) | ||
1584 | { | ||
1585 | int ret; | ||
1586 | |||
1587 | assert(cpu_is_stopped(env) || qemu_cpu_is_self(env))((cpu_is_stopped(env) || qemu_cpu_is_self(env)) ? (void) (0) : __assert_fail ("cpu_is_stopped(env) || qemu_cpu_is_self(env)" , "/home/stefan/src/qemu/qemu.org/qemu/target-i386/kvm.c", 1587 , __PRETTY_FUNCTION__)); | ||
1588 | |||
1589 | ret = kvm_getput_regs(env, 0); | ||
1590 | if (ret < 0) { | ||
1591 | return ret; | ||
1592 | } | ||
1593 | ret = kvm_get_xsave(env); | ||
1594 | if (ret < 0) { | ||
1595 | return ret; | ||
1596 | } | ||
1597 | ret = kvm_get_xcrs(env); | ||
1598 | if (ret < 0) { | ||
1599 | return ret; | ||
1600 | } | ||
1601 | ret = kvm_get_sregs(env); | ||
1602 | if (ret < 0) { | ||
1603 | return ret; | ||
1604 | } | ||
1605 | ret = kvm_get_msrs(env); | ||
1606 | if (ret < 0) { | ||
1607 | return ret; | ||
1608 | } | ||
1609 | ret = kvm_get_mp_state(env); | ||
1610 | if (ret < 0) { | ||
1611 | return ret; | ||
1612 | } | ||
1613 | ret = kvm_get_apic(env); | ||
1614 | if (ret < 0) { | ||
1615 | return ret; | ||
1616 | } | ||
1617 | ret = kvm_get_vcpu_events(env); | ||
1618 | if (ret < 0) { | ||
1619 | return ret; | ||
1620 | } | ||
1621 | ret = kvm_get_debugregs(env); | ||
1622 | if (ret < 0) { | ||
1623 | return ret; | ||
1624 | } | ||
1625 | return 0; | ||
1626 | } | ||
1627 | |||
1628 | void kvm_arch_pre_run(CPUX86State *env, struct kvm_run *run) | ||
1629 | { | ||
1630 | int ret; | ||
1631 | |||
1632 | /* Inject NMI */ | ||
1633 | if (env->interrupt_request & CPU_INTERRUPT_NMI0x0200) { | ||
1634 | env->interrupt_request &= ~CPU_INTERRUPT_NMI0x0200; | ||
1635 | DPRINTF("injected NMI\n")do { } while (0); | ||
1636 | ret = kvm_vcpu_ioctl(env, KVM_NMI(((0U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x9a)) << 0) | ((0) << ((0 +8)+8)))); | ||
1637 | if (ret < 0) { | ||
1638 | fprintf(stderrstderr, "KVM: injection failed, NMI lost (%s)\n", | ||
1639 | strerror(-ret)); | ||
1640 | } | ||
1641 | } | ||
1642 | |||
1643 | if (!kvm_irqchip_in_kernel()(kvm_kernel_irqchip)) { | ||
1644 | /* Force the VCPU out of its inner loop to process any INIT requests | ||
1645 | * or pending TPR access reports. */ | ||
1646 | if (env->interrupt_request & | ||
1647 | (CPU_INTERRUPT_INIT0x0400 | CPU_INTERRUPT_TPR0x2000)) { | ||
1648 | env->exit_request = 1; | ||
1649 | } | ||
1650 | |||
1651 | /* Try to inject an interrupt if the guest can accept it */ | ||
1652 | if (run->ready_for_interrupt_injection && | ||
1653 | (env->interrupt_request & CPU_INTERRUPT_HARD0x0002) && | ||
1654 | (env->eflags & IF_MASK0x00000200)) { | ||
1655 | int irq; | ||
1656 | |||
1657 | env->interrupt_request &= ~CPU_INTERRUPT_HARD0x0002; | ||
1658 | irq = cpu_get_pic_interrupt(env); | ||
1659 | if (irq >= 0) { | ||
1660 | struct kvm_interrupt intr; | ||
1661 | |||
1662 | intr.irq = irq; | ||
1663 | DPRINTF("injected interrupt %d\n", irq)do { } while (0); | ||
1664 | ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT(((1U) << (((0 +8)+8)+14)) | (((0xAE)) << (0 +8)) | (((0x86)) << 0) | ((((sizeof(struct kvm_interrupt))) ) << ((0 +8)+8))), &intr); | ||
1665 | if (ret < 0) { | ||
1666 | fprintf(stderrstderr, | ||
1667 | "KVM: injection failed, interrupt lost (%s)\n", | ||
1668 | strerror(-ret)); | ||
1669 | } | ||
1670 | } | ||
1671 | } | ||
1672 | |||
1673 | /* If we have an interrupt but the guest is not ready to receive an | ||
1674 | * interrupt, request an interrupt window exit. This will | ||
1675 | * cause a return to userspace as soon as the guest is ready to | ||
1676 | * receive interrupts. */ | ||
1677 | if ((env->interrupt_request & CPU_INTERRUPT_HARD0x0002)) { | ||
1678 | run->request_interrupt_window = 1; | ||
1679 | } else { | ||
1680 | run->request_interrupt_window = 0; | ||
1681 | } | ||
1682 | |||
1683 | DPRINTF("setting tpr\n")do { } while (0); | ||
1684 | run->cr8 = cpu_get_apic_tpr(env->apic_state); | ||
1685 | } | ||
1686 | } | ||
1687 | |||
1688 | void kvm_arch_post_run(CPUX86State *env, struct kvm_run *run) | ||
1689 | { | ||
1690 | if (run->if_flag) { | ||
1691 | env->eflags |= IF_MASK0x00000200; | ||
1692 | } else { | ||
1693 | env->eflags &= ~IF_MASK0x00000200; | ||
1694 | } | ||
1695 | cpu_set_apic_tpr(env->apic_state, run->cr8); | ||
1696 | cpu_set_apic_base(env->apic_state, run->apic_base); | ||
1697 | } | ||
1698 | |||
1699 | int kvm_arch_process_async_events(CPUX86State *env) | ||
1700 | { | ||
1701 | X86CPU *cpu = x86_env_get_cpu(env); | ||
1702 | |||
1703 | if (env->interrupt_request & CPU_INTERRUPT_MCE0x1000) { | ||
1704 | /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ | ||
1705 | assert(env->mcg_cap)((env->mcg_cap) ? (void) (0) : __assert_fail ("env->mcg_cap" , "/home/stefan/src/qemu/qemu.org/qemu/target-i386/kvm.c", 1705 , __PRETTY_FUNCTION__)); | ||
1706 | |||
1707 | env->interrupt_request &= ~CPU_INTERRUPT_MCE0x1000; | ||
1708 | |||
1709 | kvm_cpu_synchronize_state(env); | ||
1710 | |||
1711 | if (env->exception_injected == EXCP08_DBLE8) { | ||
1712 | /* this means triple fault */ | ||
1713 | qemu_system_reset_request(); | ||
1714 | env->exit_request = 1; | ||
1715 | return 0; | ||
1716 | } | ||
1717 | env->exception_injected = EXCP12_MCHK18; | ||
1718 | env->has_error_code = 0; | ||
1719 | |||
1720 | env->halted = 0; | ||
1721 | if (kvm_irqchip_in_kernel()(kvm_kernel_irqchip) && env->mp_state == KVM_MP_STATE_HALTED3) { | ||
1722 | env->mp_state = KVM_MP_STATE_RUNNABLE0; | ||
1723 | } | ||
1724 | } | ||
1725 | |||
1726 | if (kvm_irqchip_in_kernel()(kvm_kernel_irqchip)) { | ||
1727 | return 0; | ||
1728 | } | ||
1729 | |||
1730 | if (((env->interrupt_request & CPU_INTERRUPT_HARD0x0002) && | ||
1731 | (env->eflags & IF_MASK0x00000200)) || | ||
1732 | (env->interrupt_request & CPU_INTERRUPT_NMI0x0200)) { | ||
1733 | env->halted = 0; | ||
1734 | } | ||
1735 | if (env->interrupt_request & CPU_INTERRUPT_INIT0x0400) { | ||
1736 | kvm_cpu_synchronize_state(env); | ||
1737 | do_cpu_init(cpu); | ||
1738 | } | ||
1739 | if (env->interrupt_request & CPU_INTERRUPT_SIPI0x0800) { | ||
1740 | kvm_cpu_synchronize_state(env); | ||
1741 | do_cpu_sipi(cpu); | ||
1742 | } | ||
1743 | if (env->interrupt_request & CPU_INTERRUPT_TPR0x2000) { | ||
1744 | env->interrupt_request &= ~CPU_INTERRUPT_TPR0x2000; | ||
1745 | kvm_cpu_synchronize_state(env); | ||
1746 | apic_handle_tpr_access_report(env->apic_state, env->eip, | ||
1747 | env->tpr_access_type); | ||
1748 | } | ||
1749 | |||
1750 | return env->halted; | ||
1751 | } | ||
1752 | |||
1753 | static int kvm_handle_halt(CPUX86State *env) | ||
1754 | { | ||
1755 | if (!((env->interrupt_request & CPU_INTERRUPT_HARD0x0002) && | ||
1756 | (env->eflags & IF_MASK0x00000200)) && | ||
1757 | !(env->interrupt_request & CPU_INTERRUPT_NMI0x0200)) { | ||
1758 | env->halted = 1; | ||
1759 | return EXCP_HLT0x10001; | ||
1760 | } | ||
1761 | |||
1762 | return 0; | ||
1763 | } | ||
1764 | |||
1765 | static int kvm_handle_tpr_access(CPUX86State *env) | ||
1766 | { | ||
1767 | struct kvm_run *run = env->kvm_run; | ||
1768 | |||
1769 | apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip, | ||
1770 | run->tpr_access.is_write ? TPR_ACCESS_WRITE | ||
1771 | : TPR_ACCESS_READ); | ||
1772 | return 1; | ||
1773 | } | ||
1774 | |||
1775 | int kvm_arch_insert_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp) | ||
1776 | { | ||
1777 | static const uint8_t int3 = 0xcc; | ||
1778 | |||
1779 | if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || | ||
1780 | cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) { | ||
1781 | return -EINVAL22; | ||
1782 | } | ||
1783 | return 0; | ||
1784 | } | ||
1785 | |||
1786 | int kvm_arch_remove_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp) | ||
1787 | { | ||
1788 | uint8_t int3; | ||
1789 | |||
1790 | if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc || | ||
1791 | cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { | ||
1792 | return -EINVAL22; | ||
1793 | } | ||
1794 | return 0; | ||
1795 | } | ||
1796 | |||
1797 | static struct { | ||
1798 | target_ulong addr; | ||
1799 | int len; | ||
1800 | int type; | ||
1801 | } hw_breakpoint[4]; | ||
1802 | |||
1803 | static int nb_hw_breakpoint; | ||
1804 | |||
1805 | static int find_hw_breakpoint(target_ulong addr, int len, int type) | ||
1806 | { | ||
1807 | int n; | ||
1808 | |||
1809 | for (n = 0; n < nb_hw_breakpoint; n++) { | ||
1810 | if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && | ||
1811 | (hw_breakpoint[n].len == len || len == -1)) { | ||
1812 | return n; | ||
1813 | } | ||
1814 | } | ||
1815 | return -1; | ||
1816 | } | ||
1817 | |||
1818 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | ||
1819 | target_ulong len, int type) | ||
1820 | { | ||
1821 | switch (type) { | ||
1822 | case GDB_BREAKPOINT_HW1: | ||
1823 | len = 1; | ||
1824 | break; | ||
1825 | case GDB_WATCHPOINT_WRITE2: | ||
1826 | case GDB_WATCHPOINT_ACCESS4: | ||
1827 | switch (len) { | ||
1828 | case 1: | ||
1829 | break; | ||
1830 | case 2: | ||
1831 | case 4: | ||
1832 | case 8: | ||
1833 | if (addr & (len - 1)) { | ||
1834 | return -EINVAL22; | ||
1835 | } | ||
1836 | break; | ||
1837 | default: | ||
1838 | return -EINVAL22; | ||
1839 | } | ||
1840 | break; | ||
1841 | default: | ||
1842 | return -ENOSYS38; | ||
1843 | } | ||
1844 | |||
1845 | if (nb_hw_breakpoint == 4) { | ||
1846 | return -ENOBUFS105; | ||
1847 | } | ||
1848 | if (find_hw_breakpoint(addr, len, type) >= 0) { | ||
1849 | return -EEXIST17; | ||
1850 | } | ||
1851 | hw_breakpoint[nb_hw_breakpoint].addr = addr; | ||
1852 | hw_breakpoint[nb_hw_breakpoint].len = len; | ||
1853 | hw_breakpoint[nb_hw_breakpoint].type = type; | ||
1854 | nb_hw_breakpoint++; | ||
1855 | |||
1856 | return 0; | ||
1857 | } | ||
1858 | |||
1859 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | ||
1860 | target_ulong len, int type) | ||
1861 | { | ||
1862 | int n; | ||
1863 | |||
1864 | n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW1) ? 1 : len, type); | ||
1865 | if (n < 0) { | ||
1866 | return -ENOENT2; | ||
1867 | } | ||
1868 | nb_hw_breakpoint--; | ||
1869 | hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; | ||
1870 | |||
1871 | return 0; | ||
1872 | } | ||
1873 | |||
1874 | void kvm_arch_remove_all_hw_breakpoints(void) | ||
1875 | { | ||
1876 | nb_hw_breakpoint = 0; | ||
1877 | } | ||
1878 | |||
1879 | static CPUWatchpoint hw_watchpoint; | ||
1880 | |||
1881 | static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info) | ||
1882 | { | ||
1883 | int ret = 0; | ||
1884 | int n; | ||
1885 | |||
1886 | if (arch_info->exception == 1) { | ||
1887 | if (arch_info->dr6 & (1 << 14)) { | ||
1888 | if (cpu_single_envtls__cpu_single_env->singlestep_enabled) { | ||
1889 | ret = EXCP_DEBUG0x10002; | ||
1890 | } | ||
1891 | } else { | ||
1892 | for (n = 0; n < 4; n++) { | ||
1893 | if (arch_info->dr6 & (1 << n)) { | ||
1894 | switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { | ||
1895 | case 0x0: | ||
1896 | ret = EXCP_DEBUG0x10002; | ||
1897 | break; | ||
1898 | case 0x1: | ||
1899 | ret = EXCP_DEBUG0x10002; | ||
1900 | cpu_single_envtls__cpu_single_env->watchpoint_hit = &hw_watchpoint; | ||
1901 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; | ||
1902 | hw_watchpoint.flags = BP_MEM_WRITE0x02; | ||
1903 | break; | ||
1904 | case 0x3: | ||
1905 | ret = EXCP_DEBUG0x10002; | ||
1906 | cpu_single_envtls__cpu_single_env->watchpoint_hit = &hw_watchpoint; | ||
1907 | hw_watchpoint.vaddr = hw_breakpoint[n].addr; | ||
1908 | hw_watchpoint.flags = BP_MEM_ACCESS(0x01 | 0x02); | ||
1909 | break; | ||
1910 | } | ||
1911 | } | ||
1912 | } | ||
1913 | } | ||
1914 | } else if (kvm_find_sw_breakpoint(cpu_single_envtls__cpu_single_env, arch_info->pc)) { | ||
1915 | ret = EXCP_DEBUG0x10002; | ||
1916 | } | ||
1917 | if (ret == 0) { | ||
1918 | cpu_synchronize_state(cpu_single_envtls__cpu_single_env); | ||
1919 | assert(cpu_single_env->exception_injected == -1)((tls__cpu_single_env->exception_injected == -1) ? (void) ( 0) : __assert_fail ("tls__cpu_single_env->exception_injected == -1" , "/home/stefan/src/qemu/qemu.org/qemu/target-i386/kvm.c", 1919 , __PRETTY_FUNCTION__)); | ||
1920 | |||
1921 | /* pass to guest */ | ||
1922 | cpu_single_envtls__cpu_single_env->exception_injected = arch_info->exception; | ||
1923 | cpu_single_envtls__cpu_single_env->has_error_code = 0; | ||
1924 | } | ||
1925 | |||
1926 | return ret; | ||
1927 | } | ||
1928 | |||
1929 | void kvm_arch_update_guest_debug(CPUX86State *env, struct kvm_guest_debug *dbg) | ||
1930 | { | ||
1931 | const uint8_t type_code[] = { | ||
1932 | [GDB_BREAKPOINT_HW1] = 0x0, | ||
1933 | [GDB_WATCHPOINT_WRITE2] = 0x1, | ||
1934 | [GDB_WATCHPOINT_ACCESS4] = 0x3 | ||
1935 | }; | ||
1936 | const uint8_t len_code[] = { | ||
1937 | [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 | ||
1938 | }; | ||
1939 | int n; | ||
1940 | |||
1941 | if (kvm_sw_breakpoints_active(env)) { | ||
1942 | dbg->control |= KVM_GUESTDBG_ENABLE0x00000001 | KVM_GUESTDBG_USE_SW_BP0x00010000; | ||
1943 | } | ||
1944 | if (nb_hw_breakpoint > 0) { | ||
1945 | dbg->control |= KVM_GUESTDBG_ENABLE0x00000001 | KVM_GUESTDBG_USE_HW_BP0x00020000; | ||
1946 | dbg->arch.debugreg[7] = 0x0600; | ||
1947 | for (n = 0; n < nb_hw_breakpoint; n++) { | ||
1948 | dbg->arch.debugreg[n] = hw_breakpoint[n].addr; | ||
1949 | dbg->arch.debugreg[7] |= (2 << (n * 2)) | | ||
1950 | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | | ||
1951 | ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); | ||
1952 | } | ||
1953 | } | ||
1954 | } | ||
1955 | |||
1956 | static bool_Bool host_supports_vmx(void) | ||
1957 | { | ||
1958 | uint32_t ecx, unused; | ||
1959 | |||
1960 | host_cpuid(1, 0, &unused, &unused, &ecx, &unused); | ||
1961 | return ecx & CPUID_EXT_VMX(1 << 5); | ||
1962 | } | ||
1963 | |||
1964 | #define VMX_INVALID_GUEST_STATE0x80000021 0x80000021 | ||
1965 | |||
1966 | int kvm_arch_handle_exit(CPUX86State *env, struct kvm_run *run) | ||
1967 | { | ||
1968 | uint64_t code; | ||
1969 | int ret; | ||
1970 | |||
1971 | switch (run->exit_reason) { | ||
1972 | case KVM_EXIT_HLT5: | ||
1973 | DPRINTF("handle_hlt\n")do { } while (0); | ||
1974 | ret = kvm_handle_halt(env); | ||
1975 | break; | ||
1976 | case KVM_EXIT_SET_TPR11: | ||
1977 | ret = 0; | ||
1978 | break; | ||
1979 | case KVM_EXIT_TPR_ACCESS12: | ||
1980 | ret = kvm_handle_tpr_access(env); | ||
1981 | break; | ||
1982 | case KVM_EXIT_FAIL_ENTRY9: | ||
1983 | code = run->fail_entry.hardware_entry_failure_reason; | ||
1984 | fprintf(stderrstderr, "KVM: entry failed, hardware error 0x%" PRIx64"l" "x" "\n", | ||
1985 | code); | ||
1986 | if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE0x80000021) { | ||
1987 | fprintf(stderrstderr, | ||
1988 | "\nIf you're running a guest on an Intel machine without " | ||
1989 | "unrestricted mode\n" | ||
1990 | "support, the failure can be most likely due to the guest " | ||
1991 | "entering an invalid\n" | ||
1992 | "state for Intel VT. For example, the guest maybe running " | ||
1993 | "in big real mode\n" | ||
1994 | "which is not supported on less recent Intel processors." | ||
1995 | "\n\n"); | ||
1996 | } | ||
1997 | ret = -1; | ||
1998 | break; | ||
1999 | case KVM_EXIT_EXCEPTION1: | ||
2000 | fprintf(stderrstderr, "KVM: exception %d exit (error code 0x%x)\n", | ||
2001 | run->ex.exception, run->ex.error_code); | ||
2002 | ret = -1; | ||
2003 | break; | ||
2004 | case KVM_EXIT_DEBUG4: | ||
2005 | DPRINTF("kvm_exit_debug\n")do { } while (0); | ||
2006 | ret = kvm_handle_debug(&run->debug.arch); | ||
2007 | break; | ||
2008 | default: | ||
2009 | fprintf(stderrstderr, "KVM: unknown exit reason %d\n", run->exit_reason); | ||
2010 | ret = -1; | ||
2011 | break; | ||
2012 | } | ||
2013 | |||
2014 | return ret; | ||
2015 | } | ||
2016 | |||
2017 | bool_Bool kvm_arch_stop_on_emulation_error(CPUX86State *env) | ||
2018 | { | ||
2019 | kvm_cpu_synchronize_state(env); | ||
2020 | return !(env->cr[0] & CR0_PE_MASK(1 << 0)) || | ||
2021 | ((env->segs[R_CS1].selector & 3) != 3); | ||
2022 | } | ||
2023 | |||
2024 | void kvm_arch_init_irq_routing(KVMState *s) | ||
2025 | { | ||
2026 | if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING25)) { | ||
2027 | /* If kernel can't do irq routing, interrupt source | ||
2028 | * override 0->2 cannot be set up as required by HPET. | ||
2029 | * So we have to disable it. | ||
2030 | */ | ||
2031 | no_hpet = 1; | ||
2032 | } | ||
2033 | } |